AD-A241 697 @
AEIEEEEI

ANNUAL REPORT
YOLUME 6
TASK 6: GN&C PROCESSOR TEST & EVALUATION

REPORT NO. AR-0142-91-002

September 24, 1991

GUIDANCE, NAVIGATION AND CONTROL
DIGITAL EMULATION TECHNOLOGY LABORATORY
Contract No. DASG60-89-C-0142
Sponsored By

The United States Army Sirategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY
Georgia Institute of Technology

Atlanta, Georgia 30322-0540

Contract Data Requirements List Item AQQS

Period Covered: FY 91

91-12586
i Type Report: Annual | /

REPORT DOCUMENTATION PAGE Form Approved

OMB No 0704-0188

'a REPORT SECURITY CLASSIFICATION
Unclassified

16 RESTRICTIVE MARKINGS

2a SECURITY CLASSIF.CATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT]))
I)Approved for public release; distribution

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

is unlimited
2) continued on reverse side

AR-0142-91-002

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S MOMNITORING ORGANIZATION REPORT NUMBER(S)

62 NAME OF PERFORMING ORGANIZATION
School of Electrical Eng.

Georgia Tech

6b OFFICE SYMBOL
(If applicable)

73 NAME OF MONITORING ORGANIZATION

U.S. Army Strategic Defense Command

6c ADDRESS (City, State, and ZIP Code)
Atlanta, Georgia 30332

7b ADDRESS (Crity, State, and 2IP Code)

P.0. Box 1500
Huntsville, AL 35807-3801

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
DASG60-89~-C-0142

8¢ ADORESS (City, Stste, and JIF Coge)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NOC. ACCESS!ION KO

V1 THLE (Inciude Security Classification)

Volume 6 (Unclassified)

Guidance, Navigation and Control Digital Emulation Technology Laboratory

12 PERSONAL AUTHOR(S)
C. 0. Alford, Wei Siong Tan

133 TYPE Of REPORT 13b TIME COVERED 14 DATE OF REPORIT (Year, Month, Day) 1S PAGE COUNT
Annual FROM 9/28/90 109/27/91 9/27/91 86 -

16 SUPPLELAENTARY NOTATION

17 COSATl CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

}. Introduction

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Test Schedule

2. Strategy Appendix A: GAL Listing

3. Testing and Evaluation Appendix B: GAL Listings
3.1 GT-DP Module Appendix C: Test Monitor Source Code
3.2 GT-VSM8 Test Board Appendix D: CUPL Listing
3.3 GT-VFPU Test Board Appendix E: Board Schematics
3.4 GT-EP Evaluation Board Appendix F: Board Schematics
3.5 GT-SPOBJ Appendix G: GT-DP/PFP Board Schematics
3.6 GT-DP/PFP Test Board

4. Summary & Assessment

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

Elunciassirieorunumiteo [SAME AS RPT. [D11 USERS

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (include Ares Code)[)?t OFFICE SYMBOL

A

N Tonm 1473, JUN 86

Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

INGLASSIEIED. _ _ =~
Security Classificaton of this page

Distribution statement continued

2) This material may be reproduced by or for the U.S. Government pursuant to the copy
license under the clause at DFARS252.227-7013, October 1988.

1

UNCLASSIFIED _ L
Becurity Classification of this page

ANNUAL REPORT

VOLUME 6

TASK 6: GN&C PROCESSOR TEST & EVALUATION

Author

Wei Siong Tan

COMPUTER ENGINEERING RESEARCH LABORATORY /7 "~
£ (‘v)

Georgia Institute of Technology

AN /‘/
Atlanta, Georgia 30322-0540
Eugene L. Sanders Cecil O. Alford
USASDC Georgia Tech
Contract Monitor Project Director
Copyright 1991 CACawnsly wer A
LI Gva ki . N[
Georgia Tech Research Corporation Cere ey . :
VLR e d 7
Centennial Research Building e Tt
Atlanta, Georgia 30332 B T
L.“..i*ou..ou/“ ‘
§-~ & ..llﬁlﬂ} e Toen
! ;‘s'#r-'_': »m‘j,.’or.

Dist | Epsctal

"

|

T 2 T P T e I T I TS T s e Sy TS T e s e

DISCLAIMER

The views, opinions, and/or findings contained in this re-
port are those of the author(s) and should not be construed
as an official Department of the Army position, policy, or
decision, unless so designated by other official documen-
tation.

DISTRIBUTION CONTROL

(1) This material is approved for public release unlimited
distribution.

(2) This material may be reproduced by or for the U.S.
Government pursuant to the copyright license under the
clause at DFARS 252.227-7013, October 1988.

TABLE OF CONTENTS

lo Intmduction ® 8 © 0 6000000600 06000006000083000000¢e000600000 000000 0CELITsIES
20 Strategy 0 080 2 00 0 00PN LCOE 0L POLLPLOE L OPO PP PIOLEPNOESISIPEPLIESIELEESIOIEINBSECEER

3. Testingand Evaluationcccceeiieeiiiinrrensescecasecencsns
31.GT-DPModulecoiviiiiiiiinnnnnnnnns et eetereeeeaeaeeree e
3.2.GT-VSMB Test Boardcciiniiiiiniiiensinneennnseonnsnnanossnaenans
3.3, GT=VFPU TeSt BOardttt iet et eteenneeeaasonsnnesonsnnnnsnenesanaonans

33 1. Board Designi it i ittt e et te e st
332 Test MOMItOrcvierrniniirensresonennenannnnansaacsnasossnan
333, TSt SIaAlEZY ..o oo ivierieennnennnnnrruocosanannnnanrassneesncsonssans
3.3.3.1. Logical Operationscovvenennennninnnnsonnnenncnnenoncnnsnns
3.3.3.2. Shift Operationsccvvieenniseneiieennnsneranacnsenaoensaons
3.3.3.3. Fixed-point Operationscoeeeeevtearunninnneenancaaasosansnans
3.3.3.3.1. Addition/Subtraction/Reverse Substractioncceueecereancnens
3.3.3.3.2. MultiphiCationo . cieeeeiin i n it
3.3.3.4. Floating—Point Operationscevvieveneerneresissscncssnncans
3.3.3.4.1. Addition/Subtraction/Reverse Subtractionc00cn...
3334 2. Multiplication iivert it tttiinnererannnensseeccacacnans
3.3.3.5.Special Operationscovevveevesnenannesnneacaneonnnecasnnas
3.3.3.5.1.Packexponent/Floatoitiiintinnrretianeer e encareraaas
3.3.3.5.2. Inverse Seed/ Unpack Exponent/ Unpack Mantissa/ SqrtSeed
3.3.3.5.3. ROUNA/TIUNC . .vovvetieeeneeeeaoneenneeeanesaneosaananaanses
3.3.3.5.4. Sign of Sine/ Odd to Negative/Change Sign/Signof Tan
334, TeStReSUIL . ..o vvitr s iineeernnnnneesiereneennnenansesansonnanccenans
3.3.5.GT-VFPU Test SUMMMAIYouvvrennenennnunnnereneseesasssoasennnens
34.GT-EPEvaluation Boardccoeeiiiiiiiininnreeereenernaceancnnnns
34,1, Board Design e i ittt aee e ate e
34.1.1. HostInterface P
3.4.1.2. Processor Functional Blockscciiiiiinriineirenenranenneeennns
34.1.2. 1. InStrucCtioN MEmMOTY . ..ovuvivrerrarnnneeraronenassssssanncanses
340,22 GT=VIAG ittt etitee i iiteerereeeenerreeanenanns
34.1.2.3. GT-VDAGiiiiiireeeeencrueeneneeseereasnsearanaenees
34.1.24. DAlaMeMOTY . ..oviiennrereettooneerraneeeeeesseseansennnnns
3412 5. EPROM ...ttt et it et e
34.1.26. AP-BuslInierfacecoiiiiitnrininienererenneaniosonnannn
3.4.1.3. Device MappiNgocuuiuieiiiritiretrnareasrtrsetsreeeianans
342 AP-Businterface Timingcciiiinnirnnnerecnnenecsnecnsonns
343 GT-EP Testngcvviiririreteeoosneaenoeonnenssssosassassanna
34.3.1. Functional Testiingcoovieireeerrennnnanesronsucessasiosonsaces
34301 LEDBAS ...ttt ettt et e e

K 3.3 30 B 5 23 AP
34313 APVYMEttt ittt e ettt
34314 LOADERcoovvevinnnannnnnn, e e,
34,32, SySteM TeSiig .. - vttt vtiieeeneaseotnonnaneeeasensasetosasaseseaans
34.3.2.1. Applicationscciuuieiiiriaretnnnnetaeetrsenocacenaans
3432 2. DIagNOSC . ..vvvieiiteriitoceetsanaransanassarssnstasasranes

e

O OO \O OO \WO\WOWOO 0NN WL W W

3.5.0. BOArd DeSigN . . . oot et ie ettt et et e
K T 207 g T 1 17
20 T T = (-~ 3 o ¢ S
K TR T A 5 T I o ¢ S O
3.6.GT-DP/PFP Test Boardcvviiiiitinessrinnneeenronsoreeeeeeesenens
K T30 TR 0 .
36.1.1. EP-Bus Address Mappingccciinriiineenerecnseenarsanenens
3.0.1.2. INterm Pt ASSigmMENt ...ttt it ittt tate e e
36.1.3. StamS REZISIErttt iiiiiiitertitiennereenerennoseaaoonnnnnnens
36. 14 . EPLD Controlcoiiiiiiiiiiiiii ettt e e e e
36.1.4. 1. Xbarpld ..ottt et it i e it st e it e
RICT T 000 -)

R JO U3 T 0 -0 R) s
3.6.1.5. Board SChematicscvivurtriiiiieetnrnnnnneerecnsanasanennnannns

4, Summary and ASSESIMENE . .. ccoveeereerrorsccscscosacsscssosonsssns

5. Test Scheduleccooivevriineereeccoesnscsoasesscrssassscasane
Appendix A : GAL LiStngscovviintiiiniieeetnrennnnnecrseennnneeeeeennns
Appendix B : Test Monitor Source Codecciiiiniineenereenneennnnns
Appendix C:GAL Listingoiiiiiniiinrrerornsnnnnscansnnsssssnsannnnens
Appendix D i CUPL LiStngiiiitntuiiiiieietnsunnneeeneoeanesnssanennanans
Appendix E: Board SChematics v cviiiiitintranienerseencocsonerensnnanens
Appendix F: Board Schematics ovvtiiiiivinetinrnneneereensnenasassnnnans
Appendix G : GT-DP/PFP Board Schematicscoiieieeiennnnnneensnasans

1. Introduction

CERL hasdeveloped a set of VLSI chip set for the guidance, navigation, and control of high
the next generation interceptors for the Swrategic Defense Intiative applications. The processor is
called the GN&C processor and collectively the VLSI chip set is called the GN&C chip set.

The GN&C processor consists of three functional types: executive processor, signal pro-
cessor, data processor, and interconnection network. The VLSI chips that had been developed for
the executive processor are the GT-VIAG and GT-VDAG. The VLSI chips that had been devel-
oped for the signal processor are the GT-VNUC, GT-VTF, GT-VTHR, GT-VSF, GT-VCLS, and
GT-VCTR. The VLSI chips that had been developed for the data processor are the GT-VSEQ,
GT-VDR, and GT-VFPU. The VLSI chips that had been developed for the interconnection net-
work are the GT-VSM8 and GT-VSNI. The GT-VFPU chip developed for the data processor is
also used on the executive processor.

All of the GN&C chip set except the GT-VNUC and GT-VTF had been fabricated and
tested. The GT-VNUC and the GT-VTF are currently being fabricated.

This document presents the test and evaluation methodology for the GN&C chip set, the
GN&C processor board, and the development of special test board.

2. Strategy

As illustrated in Figure 1, the testing and evaluation of the GN&C chip set consists of four
stages: VLSI testing, board testing, functional testing, and system testing.

The VLSI testing consists of two phases: simulation testing and packaged part testing. Be-
fore a chip is sent out for fabrication, test vectors are generated and applied to the simulation model
of the VLSI chip. Two types of test vectors are generated. The functional test vectors, the first
type, consists of a set of test patterns devised to test the functional modules in the VLSI chip under

VLSI ————> Board -——-—> Functional _—’ System

Figure 1. Testing and Evaluation Strategy

a normal functional operating condition. It also includes the testing of the interaction between the
functional modules. The second type is the manufacturing test vectors. The manufacturing test
vectors are designed to exercise all the transistor nodes so that manufacturing defects can be de-
tected. The strategy for generating the manufacturing test vectors is to exercise all the functional
modules of in a orderly fashion so that each changing is a state is can be detected in the output pins
of the chip. There is no strict requirement of the fault coverage level. Typically, the manufacturing
test vectors achieve close to a 90% coverage for the VLSI chips developed at CERL. The amount
functional vectors depends on what the designer think is sufficient to cover the chip. Some kind
of system level test requirement is imposed on the functional test vectors. This requirement is
derived from system level simulation of the GN&C chip set and in some cases derived from the
multichip simulation of some subset of the GN&C chip set.

The simulation model of the VLSI chip consists of a functional model and a gate level mod-
el. During the development stage, all simulation are performed on the functional model because
the gate level simulation runs a lot slower. Prior to sending a chip out for fabrication, all the test
vectors are run through the gate level simulation.

After a chip is fabricated, the same set of test vectors were applied to the packaged parts.
. The chip tester looks up the value of the input signal from the vector files and applies the appropri-
ate stimuli to the input pins of the chip. At the proper interval dictated by the test vectors, the chip
tester samples the signals on the output pins and compared them against the values in the test vector
files. The passing of test vectors on the chip tester constitutes the condition of acceptance for the
GN&C chipset from the manufacturer.

A printed circuit board typically contains several VLSI chips. The board testing verifies
that the VLSI chips in a printed board operate correctly as a functional unit. Each printed circuit
board for the GN&C chip typically represents a functional module of the GN&C processor. In
some cases, an evaluation test board is assembled to specifically test the functionality a VLSI chip
or chip set before the final printed circuit board module is developed.

The functional testing involves the integration and testing of several printed circuit board
modules. The testing at this level is usually very rudimentary. For the executive and data proces-
sor, this step involves the loading and execution of simple program to verify the capability to per-
form basic comprtations and to interact with the operating environment through the I/O com-
mands. For the signal processor, this step involves the programming and checking of the host port
for programming the coeficients and the processing of simple images through the signal processing
chip set.

The system level test consists of general application tests, diagnostic tests, and the mission
specific application tests. The general application tests consist of a collection of numerically inten-

sive application and benchmark test to verify and evaluate the performance of the processor. The
first objective of the diagnostic test is to determine whether the GN&C processor is functional.
The second objective is to identify the faulty board and the faulty component. In many cases, the
diagnostic test may not be able to identify the exact faulty part. It may simply identify a list of
possible faulty components. The nission specific application test involves running a representa-
tive GN&C program. This includes interfacing the GN&C processor to a simulation testbed which
simulates the interceptor dynamics and its surrounding environment.

3. Testing and Evaluation

Asindicated earlier, all the VLSI chips except the GT-VNUC and GT-VTF chips had been
fabricated and tested. The GT-VNUC and GT-VNUC chips are currently being fabricated. The
latest two chips that had finished fabrication is the GT-VIAG and GT-VDAG chips. Both chips
do not pass all the test vectors. The GT-VIAG chip experienced some problems with the RF[25]
signal line. The errors on the signal line do not exhibit a deterministic patterns. The GT-VDAG
f_2 signals.

chip experienced some problems with the R_eq_f_1,R_eq_f 2,S_eq _f_1,and S
The error patterns indicated that there may have been an error in the Genesil comparator block.
Instead of the propagational, the error patterns suggest that there might be a PHASEB latch in the
comparator block. Fortunately, this does not cause those signals are available in PHASEA and it
should not matter that the signals are sampled on PHASEA. One possible concern is that this con-
straint might stretch out the timing of PHASEA. Both of these problems are currently being inves-
tigated.

To date 6 GN&C processor and test boards had been built. In the following sections, the
test and evaluation of each of these board will be given.

3.1. GT-DP Module

As shown in Figure 2, the GT-DP module consists of four VLSI chips: GT-VDR, GT-
VSEQ, GT-VFPU, and GT-VSNI. The board is 6.3” x 1.8” in size. The board is a generic module
that can be plugged into a mother board with a connection to a host computer. The GT-DP module
had been tested on two separate mother boards. The first mother board has a Multbus I host port
and a GT-VSMS chip (see section 3.2). Itis can accomodate two GT-DP modules. The second
mother board has a GT-EP host port and a PFP crossbar interface port (see section 3.6). It can
accomodate one GT-EP module.

The initial testing of the GT-EP module was done using the mother board with the Multibus
I port. A PC-AT host computer is used to communicate with the GT-DP module(s). Two off-the-
shelf interface boards are used to connect the PC-AT bus and the Mtibus I bus.

. GT-VSNI
GT-VFPU o

Figure 2. GT-DP Module Layout

The software that had been developed for the GT-DP module are a compiler, a loader, and
some host utilities. The compiler supports ¢ subset of Pascal language. The data types s..pported
are boolean, integer, real, and array of integer and real. The language constructs supported are if
... then ... else ... , repeat ... until ..., while ... do, begin ... end , procedure, and function. Arbitrary
arithmetic and boolean expressions are supported for the above data types and language constructs.

The loader accepts the output produced by the compiler and down load code to the GT-DP
instruction and data memory. For the most part, the loader is independent of the interface hardware
used to connect the GT-DP processor. The loader invokes procedure calls in the host utility library
to interact with the interface hardware.

The host utility library consists of a set of subroutines for the communication between the
GT-DP processor and the host. For example, the start_system and siop_system procedures allows
a program to stop and start the GT-DP processors in the system. The test_DR and test_SEQ in-
vokes a sequence of tests to verify the functionality of the GT-VDR and GT-VSEQ chips. The
loader also includes functions/procedures for the host to communicate interactivel; with the GT-
DP processor. Interactive communication means thai the host processor is running a program, the
GT-DP processor is running a program, and the two processors are exchanging data over the inter-
face board.

The application programs that had run on the GT-DP processor ar. a 7th order differential
equation system for satellite attitude control, a Mandelbrot fractal image g.neration program, and
a simple target selection algorithm in hardware—in-the-loop simulation with the Parallel Function
Processor testbed.

All four chips in the GT-DP have been functioning as expected. The processor is tested
to run at 10 Mhz. The Genesil Timing Analysis estimates the operating frequency at 6.6 Mhz.

3.2. GT-VSMS Test Board

The GT-VSMS test board is a Multibus I wire-wrapped board with a GT-VSMS chip, 3
buffer chips, two EPLDs, 1 hex switch, and 2 TTL clock generators. It has two slots for the GT-DP
processor modules. One TTL clcck generator sets the transfer rate for the GT-VSMS chip. The
other TTL clock generator sets the operating frequency for the GT-DP processors. The hex switch
selects board space ba- :d :he address value of /ADR13..0 for the Multibus I. The block diagram
of the GT-VSMB8 test board is shown in Figure 3. This iest setup is referred to as the GT-DP Multi-

bus I system.

GT-DP
(Slot 0)

GT-DP Host Bus

GT-VSM8 |k

PC-AT [
Computer §

Mutibus I
Interface

N 3.

T-Bus to
MultiBus
Interface

Figure 3. GT-VSM8 Test Configuration

The board had been used successfully to download programs to the GT-DP modules. The
communication between two GT-DP modules have also been tested through the on-board GT-

YSMS chip.

3.3. GT-VFPU Test Board

The GT-VFPU test board was developed to characterize the operating speed of the GT-
VFPU chip. This document presents the design of the test board, the testing strategy, and the test
results.

3.3.1. Board Design

The architecture of the GT-VFPU test board is shown in Figure 5. The board was designed
on a Multibus I board. A Multibus I to PC-AT interface board is used to connect the test board
to a PC-AT host. The clock that drives the GT-VFPU chip is connected externally to a function
generator. The power to the GT-VFPU chip is decoupled from the Multibus power plane. It is
connected to an external power supply. The board design schematics are shown in Appendix F.
The source code listing for the programmable logic chips are shown in shown in Appendix A and
the test monitor program source code listing is shown in Appendix B.

The test software running on the PC Host generates a set of test vectors for each opcode
category and downloads them into the memory unit that stores the stimuli for the GT-VFPU. Once
instructed to execute, a run—time controller fetches the stimuli sequentially from each of the
memory locations. For each stimuli, GT-VFPU computes the result and stores it in a second
memory unit. The test software on the PC computes the correct results to be expected and com-
pares this result with the result generated by the GT-VFPU. The memory units are capable of
generating and capturing 4096 vectors in a single run.

The test board schematic design is included in Appendix A. The source programs for the
on-board GALs are listed in Appendix B. The source code listing of the test software is listed in
Appendix C.

3.3.2. Test Monitor

A test monitor running on the PC-AT host was developed to control the GT-VFPU test
board. It consists of 1,530 lines of Turbo Pascal source code. The available commands are:

tmem : test memory;

tlog : test xor/and/or/passR/not R/not S;
tiadd : test integer add/sub/rsub;

timult : test integer mult

tfadd : test floating point add

tfmult : test floating point mult

tshift : test ROR/ROL/SHR/SHL

tspecO : test pack exp & float

Variable

Clock
Generator

(Stimuli)

0D NN NN NNAS DL s SN A

Register

e OB A

Variable ;
Power
Source

(Resilt)

Figure 4. GT-VFPU Test Board Architecture

tspecl : test seed, unp_exp, unp_man, root_exp, & root_man

tspec2 : test round & trunc

tspec3 : test sign manipulation

tall
dsoe
soe
start
stop
sb
dw
sSW

cont

: test all of the above

: do not stop on error

: stop on error

: start testing

: stop testing

: select memory bank

: display memory word

: substitute memory word

: set testing mode to continuous

single : set testing mode to single
debug : toggle debug setting
quit : quit FPU Test Monitor.
Each of the above commands can be invoked from the monitor.

3.33. Test Strategy

The GT-VFPU opcodes are divided into five broad categories: logical, shift, fixed—point,
floating—point, and special. The stimuli for the GT-VFPU consists of the signals R[31..0],
S[31:0}, and Opcode[4:0]. Two vector sets were used to provide a combination of stimuli for each
opcode category.

The first set consists of test vectors generated from a fixed set of patterns devised for each
opcode category. Three arrays are used to store the primary test patterns for R[31:0], S[31:0], and
Opcode[4:0]. Three, three-level-nested loops are used to generate the test patterns for different
combinations of R[31:0], S{31:0]. amd Opcode[4:0]. Each nested loop places the index of the
R[31:0], S[31:0], and Opcode[4:0] arrays in the inner loop. The purpose is to generate a sequential
set of patterns that toggle the different sources of input stimuli to the GT-VFPU on a per cycle ba-
sis. To insure that the opcode bit fields are toggling every cycle, each odd storage element for the
Opcode[4:0] array is stored with an inverted value of the opcode of the preceeding even storage
element.

The second vector set consists of random patterns for R[31:0] and S[31:0].

The fixed patterns for each opcode categories are given in the following sections.

13.3.1 Logical O .

The logical operations are passR, and, or, xor, not R, and not S. The fixed patterns used
for this test for the R[31:0] and S[31:0] arrays are $00000000, $£fIfffff, $555555555, $aaaaaaaa,
ST, $0000G0G00, $12345678, and $9abedef0. The pattern $0G000000 is repeated twice to
create S$fIfEff to $00000000 and $00000000 to SEFFTffff transistions.

3.3.3.2. Shift O .

The shift operations are shift left, shift right, rotate left, and rotate right. The fixed patterns
used for this test for the R[31:0] array are $00000000, $fIffffff, $555555555, $aaaaaaaa, SFHITIIL,
$000000000, $12345678, and $9abcdef0. The fixed patterns for the S[31:0] array are $00000000,
$00000001, $00000010, ..., $0000000f.

1.3.3.3. Fixed—point O .
The fixed—point operations are addition, subtraction, reverse subtraction (-R[31:0] +
S{31:01]), and multiplication. The Multiplication is tested separately.

3.3.3.3.1. Addition/Subtraction/Reverse Substraction

The fixed patterns used for this test for the R[31:0] and S[31:0] arrays are $00000000,
$00fffttf, $00555555S, $00aaaaaa, $OOffIffff, $000000001, $00123456, $00abcdef, $SOSFFFTT,
$805555555, $80aaaaaa, $8OfTITff, $800000001, $80123456, and $80abcedef.

3.3.3.3.2. Multiplication

The fixed patterns used for this test for the R[31:0] and S[31:0] arrays are $000000000,
$O0Offfftf, $00aaaaaa, $00555555, $00000fff, $00000aaa, $00000555, $OOffft, $80000000,
$8Offfftf, $80aaaaaa, $80555555, $80000fLT, $80000aaa, $80000555, $SOfFIfLT.

13.3.4. Floatine-Point Q .
The floating—point operations are addition, subtraction, reverse subtraction, and multipli-
cation. The multiplication is tested separately.

3.3.3.4.1. Addition/Subtraction/Reverse Subtraction

The fixed patterns used for this test for the R[31:0] and S[31:0] arrays are $3f000000,
$3MLIHfff, $3faaaaaa, $3£555555, $3f000001, $7f000000, $2a800000, $55000000, $00800000,
$bf000000, $bfffffff, $bfaaaaaa, $bf555555, $bf00001, $ff000000, $aa800000, $d5000000,
$80800000.

3.3.3.4.2. Multiplication

The fixed patterns used for this test for the R[31:0] and S[31:0] arrays are $00000000,
$3fffffff, $3faaaaaa, $3f555555, $00000fff, $00000aaa, $7f000555, $7{Ifffr, $08000000,
SOfffffff, $bfaaaaaa, $b£555555, $80000LHE, $80000aaa, $f000555, SEIELLFLS.

3.3.3.5. Special O .

The special operations are pack exponent, float, inverse seed, unpack exponent, unpack
mantissa, square root exponent seed, square root mantissa seed, round, trunc, sign of sine, odd to
negative, change sign, and sign of tan. The testing of these operations are separated into four

groups.

3.3.3.5.1. Pack exponent/Float

The fixed patterns used for this test for the R[31:0] and S[31:0] arrays are SQOfFffff,
$80000001, $80000004, $80000010, $80000040, $80000100, $8OfTTLS.

3.3.3.5.2. Inverse Seed/ Unpack Exponent/ Unpack Mantissa/ Sqrt Seed

The fixed patterns used for this test for the R[31:0] and S[31:0] arrays are $00000000,
$3fEEfT, $000001TE, $3f000555, $08000000, $bSFfffff, $80000fLT, $f000555.

3.3.3.5.3. Round/Trunc

The fixed patterns used for this test for the R[31:0] and S[31:0] arrays are $00000000,
$3IEEE, $00000fT, $3f000555, $4b000000, $offfffrf, $c6000fff, $bf0005SS.

3.3.3.5.4. Sign of Sine/ Odd to Negative/Change Sign/ Sign of Tan

The fixed patterns used for this test for the R[31:0] and S[31:0] arrays are $00000000,
$00000001, $80000010, $80000001, $3f800000, $3£800001, $bf800010, and $bf800001.

3.3.4. Test Result

All Tests were done at room temperature (~75 deg F). Three voltage test conditions were
applied to the GT-VFPU chip. The test results are shown in Table 1.

Table 1. Maximum Operating Frequency Characterized by Opcode Category

Opcode Category |4.5V@150mA |S0V@190mA |55V @ 230 mA
logical 19 19 19
Fixed—Point Add 18 19 19
Fixed-Point Mult 19 19 19
Floating—Point Add |16 18 18
Floating-Point Mult |17 19 18
Shift 19 19 18
Special 0 17 18 18
Special 1 17 18 , 19
Special 2 15 17 19
Special 3 19 19 19
Max/Min 19/15 19/17 19/18

3.35. GT-VFPU Test Summary

The GT-VFPU test board demonstrated that the Genesil timing and power analysis were
very conservative. Genesil predicted a maximum operating frequency of 6.6 Mhz and a power con-
sumption of 5.1 W for the GT-VFPU chips. The test result shows that the GT-VFPU operates at
17 Mhz and consumes only 950 mW with a 5.0 V supply. The highest operating frequency attained
is 19 Mhz. This limit may have been imposed by the test board.

3.4. GT-EP Evaluation Board

The GT-EP evaluation test board was developed as a platform for :
1. evaluating and testing the GT-VIAG and GT-VDAG chips at the board level,

10

2. developing and testing the GT—EP software, and
3. measuring and evaluating the performance of the GT-EP processor.

3.4.1. Board Design

3.4.1.1. Host Interface

The GT-EP evaluation board is connected to a Sun host through a GT-APVME interface
board (see Figure 5). The GT-EP communicates with the GT-APVME board through a high
speed 32-bit synchronous AP-Bus. The GT-APVME in turn communicates with the Sun host
through the VME bus. The GT-EP is a board modale on top of the GT-APVME mother board.
This arrangement isolates the host from the processor module and simplifies the hardware and soft-
ware testing of the host interface. Appendix E provides the schematics of theboard design.

Figure 5. GT-EP Host Interface

3.4.1.2, Processor Functional Blocks
Figure 6 shows the high level block diagram of the GT-EP evaluation board.
The EP-Bus connects the various functional components of the GT-EP processor. Electri-

cally, the GT-EP bus is not strong enough to interface directly with GT-APVME board. The AP-
Bus buffers the EP-Bus to the GT-APVME board.

The following sections describe the functionality of each block. Appendix C provides the
source code listings of the programmable logic chips.

3.4.1.2.1. Instruction Memory

The instruction memory uses four CYM1831 or CYM1841 memory modules. Each
CYM 1831 consists of 64k x 32 bits and each CYM1841 256kx32 bits. Initially the CYM1831
memory modules will be used. They can be replaced with CYM 1841 memory modules if addition-
al instruction memory is required.

11

Instruction
Memory

AP-Bus

GT-VIAG

|JEP-Bus

Figure 6. GT-EP Functional Block Diagram

A set of buffers are used between the GT-VIAG and the memory modules for the control
and address lines. This is necessary because of the capacitive loading on the address lines and
control lines to the memory modules.

The instruction memory supplies only 22 of 26 bits for the pc_min_op field, 24 of 26 bits
for the r_off field, 25 of 26 bis for the f_off field, and 22 of 26 bits of the s_off field. The remaining
bits of the instruction fields are connected to ground through a set of pull-down resistors. This
poses a problen- when a negative offset with respect to the address pointer is required. In this case,
the f_off, r_off, and s_off fields need to be sign extended by connecting f_off[23] to f_off]25:24]},
r_off[23] to r_off[25:24], and s_off[21] to s_off[25:22]. To reduce the capacitive loading on
f_off[23], r_off[23], and s_off[21], the sign extend can be spread across f_off[22], f_off[23],
r_off[22], r_off[23], s_off[18], s_off[19], s_off[20], and s_off[21]. Each of the signals would then
have to drive only two signal loads. This scheme works only if 17 bits of address information are

12

needed as is the case for the CYM1831 or CYM1841 memory modules. The address mapping to
the 24-bit AP-Bus is not affected because relative addressing is not used on the AP-Bus.

Also in the instruction memory schematic section are three LEDs for conveying the GT-EP
status information. They indicate the kernel status, the freeze condition, and the GT-EP bus activi-
ties on the AP-Bus.

3.4.1.2.2. GT-VIAG

The GT-VIAG chip is primarily responsible for generating the instruction address for the
instruction memory.

The Intr1 signal to the GT-VIAG is connected to the Bus_err signal on the AP-Bus so that
an interrupt can be generated when an access is performed on the AP-Bus memory address that
is not mapped onto a physical device. IntrO and Intr7..2 are mapped directly to IntrQ and Intr7..2
on the AP-Bus.

3.4.1.2.3. GT-VDAG

The GT-VDAG VLSI chip generates data addresses, SF_adr and RF_adr, for the data
memory.

The SF_addr field is 17 bits and controls only the data memory. The RF_addr field is 24
bits and controls the data memory and the AP-Bus.

3.4.1.2.4. Data Memory

The data memory uses two memory modules that are of the same type as the ones used for
the instruction memory. The data memory size is either 64kx32 or 256kx32 depending on which
type of memory module is used. The two memory modules are written simultaneously. During
a read, separate values can be fetched from the two memory modules.

Four 8-bit buffers are used to map the RF data bus onto the S data bus during a write. A
20-pin GAL is used to generate the control signals for the memory modules. Also coming out of
this GAL are FPU_FRZ and FPU_OE signals which are used to control the GT-VFPU freeze and
output enable signals.

3.4.1.2.5. EPROM

Four 2kx8 CY7C293 EPROM chips provide startup code for the GT-EP processor. The
boot EPROMs in the GT-VIAG and the GT-VDAG chips enable the GT-EP processor to begin
fetching data from device channel 3 and down loading them to the instruction memory for execu-
tion after a reset.

13

One 20-pin GAL and a 74393 counter chip supply the address to the EPROM chips. Each
time a read is performed on device channel 3, the address value is incremented by cne. The address
is initialized to zero on a reset.

3.4.1.2.6. AP-Bus Interface

The schematics for the AP-Bus interface spread across four sheets: control, data, address,
and connector.

The control section consists of three 20—pin GAL chips. They are primarily used to gener-
ate control signals for the AP-Bus interface. The CLK and FPU_CLK signals are generated here.
They are used to drive the GT-VIAG/GT-VDAG and GT-VFPU respectively. The CLK signal
is one half the frequency of the AP_CLK. The FPU_CLK is also one half the frequency except
during a freeze. If the GT_VIAG and the GT-VDAG chips are about to enter a freeze condition,
the FPU_CLK is held low so that the internal states of the GT-VFPU do not change. This is neces-
sary because the GT-VFPU expects a freeze signal to be valid on the falling edge of the clock
whereas the GT-VIAG is not able to resolve the freeze signal until after the falling edge of the
clock.

One of the GAL chips provides signals to drive three LEDs. The three signals are mapped
onto the GT-EP write memory space on device channel 3. The signal, BUS_LCK, is passed onto
the AP-Bus. Itis set active when the GT-EP intends to retain master control of the AP-Bus.

The GT-EP interfaces with the AP-Bus with four control signals (Rd, Wr, EP_Brq, and
EP_Mstr), 24-bit address, and 32-bit data. On a write operation, the GT-EP posts the write on
the data register and proceeds before the AP-Bus actually completes the write cycle. On a consec-
utive write, however, the GT-EP will pause if the value on the data register has not been written
out to the AP-Bus. On a read operation, the GT-EP waits until the data from the AP-Bus is valid.

The interrupt signals on the AP-Bus are active low. They are inverted before connection
to the GT-VIAG chip. Intr 1 is generated by the GT-EP processor. The Intrl to the GT-VIAG
chip is connected to the Bus_err signal on the AP-Bus instead.

3.4.1.3. Device Maopi

The GT-EP device mapping is shown in Table 2. The write only registers in the last four
entries are each a 1-bit register. Their contents are toggled each time a write is performed on the
register. Upon reset, their values are initialized to zero.

14

Table 2. GT-EP Device Mapping
DS3..0 {[RF_ADR24 | RF_ADRL..0 | Device Operations | Description
0 X XX GT-VIAG & |Read & Write | Accessing load and
GT-VDAG store instructions

1 X XX Data Memory [Read & Write |Primary storage de-
vice

2 X XX AP-Bus Read AP-Bus Interface

2 1 XX AP-Bus Write AP-Bus Interface

3 X XX ROM Read only Used during booting

3 1 00 LEDO write only First general status in-
dicator

3 1 01 LED1 write only Second general status
indicator

3 1 10 Intrl write only Generate an interrupt
on the AP-Bus

3 1 11 Bus_lock write only Lock the AP-Bus for
use by the GT-EP
only

3.4.2. AP-Bus Interface Timing

Figure 7, Figure 8, Figure 9, and Figure 10 illustrate the interface timing between the EP—
Bus and the AP-Bus. The AP-Bus operates at twice the frequency of the EP-Bus. Since the EP-
Bus performs a write and a read operation in a single cycle, the bandwidth between the two buses
matches almost exactly.

15

Write3 A W | __/ _

Rfi3 ‘ | U A W -
EP_Brg# — \ Y S
EP_Mstr# \ /A
Writ \ I
Aclt g — _/ _/
RF_adr25.0__—— - p L ps

APadck — [__ \ I\

A23.0 C X D ¢ Y—
RF.25.0 —(v Yo P

AP dir — | W
APcab — /T | I\ [\

AP_dat_en — S
D31..0 C X X Y—

Figure 7. EP Writes on AP-Bus

16

Clk J /e /e /e
Readd _—— ./ J — |
Dav3 T\ [
EP_Brg# \ s \ s

EP_Mstr# \ —
Rd# \ [\ /

Ackd# | A __/

RF_adr25..0 () Sy r—
AP adck \ S\

A23.0 { X)y
RF_25.0 O __>—
AP_dir

AP_cba [\ A W
AP_dat_en# \—/ \ Y A
D31.0 C___— D

Figure 8. EP Reads on AP-Bus

17

Clk I s WU s S e IS e IS e A pum I |
Write3 /— \ [\

Rfi3 \ N\ -
Read3 —0u0 / \

Dav3 [T\

EP Brg# ~— \ I \~—
EP_Mstr# \ [
Wr# | W | WY A
Rd# \ /

Ack# —/ __/ __
RF_adr25.0__—y D D

AP_adck — [\ I\ \

A23.0 —(X X y
RF_25.0 —() '

AP dir — [\ M
APcab — [\ T\

AP_cba \

AP_dat_en | UE— — -
D31.0 oD ——

Figure 9. EP Write-Read-"Vrite on AP-Bus

18

Clk — L |
ds_sel - / |-
Ods_sel —mn/ o\ [
Readl’ \ S
Writel’ \. /

RT adr23.0——(X)
SF_adr17.0— X r—
RF31.0 {) I
s3I0 —— D, >
SF_oe’ \ —
RF_oe’ ——\ /

dat_we' ——————\ /

RF_en’ \ [~
FPU_oe” —\ /

Figure 10. EP Memory Write Read Access

3.43. GT-EP Testing

Hitachi Multiwire had fabricated four multiwired boards. Their engineer(s) failed to con-
nect the AP-Bus power and ground connectors to the power and ground planes, respectively on
the boar<s. To begin testing immediately, Georgia Tech accepted one board and requested Hitachi
to refabricate the other three to fix the problem. Testing on the GT-EP evaluation had be=n started.
The folowing sections provides the details of the tests that had been done and outline an approach
for the tests that are planned.

19

3.4.3.1. Functional Tesii

The first test is to fetch and execute instructions from the on—-board EPROMs. Three pro-
grams had been successfully run and executed. Several netlist errors were found and corrected
using jumper wires. The three test programs are described in the following sections.

3.43.1.1. LEDBAS

LEDBAS is a simple program that performs simple computations using the data memory
and simple I/O operations on channel 3. This test verified that the GT-EP invokes the internal
boot-ROM, fetches instruction from the EPROM, and executes the program correctly. The behav-
ior of the GT-EP was observed using a logic analyzer.

3.43.1.2. LED

The LED program starts up the GT-EP processor and toggles the two on—board status
LEDs at a two million count interval. This program confirms the GT-EP steady state operation.
The behavior can be observed visually from the value of the LEDs, e.g. 00, 01, 10, 11. This pro-
gram had ran succesfully.

3.43.1.3. APVME

APVME tests the basic write and read operations on the AP-Bus interface. This programs
starts up the GT-EP processor, executes six writes on the AP-VME board memory, and executes
six reads on the AP-VME board inemory. The program execution is observed and verified on the
logic analyzer.

3.4.3.1.4. LOADER

LOADER enables the GT-EP processor to communicate with the host through the GT-
APVME board. It understands three basic messages from the host: load_inst, load_data, and
start_program. With this three basic messages, the host can completely control the GT--EP proces-
sor including loading a more sophisticated loader if necessarv. The LOADER program had been
written and compiled. It has not been tested.

3.43.2, System Testing
3.4.3.2.1. Applications

It is desirable to run as many application programs as possible on the GT-EP processors.
The programs that will definitely be run on the processor are the 7th order satellite attitude control
system, Mandelbrot fractal image generation, solution of linear system, and » integration. Many

20

routines from the SPECMARK benchmark that can run at single precision will be tested on the
GT-EP. Most importantly a collection of representative GN&C flight algorithms will be tested
on the GT-EP. '

3.4.3.2.2. Diagnostic

The GT-EP processor needs a diagnostic program to verify its full functionality. The major
components of the GT-EP processor are the GT-VIAG, GT-VDAG, GT-VFPU, instruction
memory, data memory, and I/O interface. The diagnostic program will consist of test routines to
exercise each of the major components.

3.4.3.2.3. Mission Specific

The ultimate test for the GT-EP processor is the mission specific test. Under this test, the
GT-EP needs to receive centroid data from GT-SPOBJ board, process the data, performs all nec-
essary GN&C computations, and interacts with the surrounding environment simulated on the Par-
allel Function Processor.

3.5. GT-SPOBJ

The GT-SPOBJ board consists of a GT-VSF chip, a GT-VTHR chip, a GT-VCLS chip,
and two GT-VCTR chips. The processing elements of the GT-SPOBIJ and the sequence of opera-
tions are shown in Figure 11. The GT-SPOBJ is not a test board but an actual prototype board for
the GN&C processor. Since the actual GT-EP processor board is not available yet, a PC-AT com-
puter is used to host the testing through a custom~designed AT-Bus to EP-Bus interface board.

3.5.1. Board Design
The detail of the board design is described in Volume 5.

3.52. Testing

3.5.2.1. Host Port

The GT-VSF and GT-VTHR host port is used to program the chip coefficients and to con-
trol the chip operating mode. The testing of the host port are acomplished by writing and reading
the patterns aaaa, 5555, ffff, 0000, and random patterns to all the coefficient registers.

The GT-VCLS chip does not require a host port. The host port of the GT-VCTR chip is
used for reading object centroids detected on the pixel data streams. The GT-VCTR host port is
tested in conjuction with the pixel port testing in the next section.

21

GT-spOBJ :
Data —{ GT-VSF GT-VTHR GT-VCLS

GT-EP Bus
(host port)
leccesmcccscansacacnsoncososrsrnaensnocsossersesaheascwnnnceccwresonsannacacccaccase -
PC_AT AT-Bus |
Interface
Figure 11. GT-SPOB]J Test Setup
3.5.2.2, Pixel Port

The pixel port is used to receive pixel data from the Focal Plane Array. In the test mode,
the Seeker Scene Emulator is used to emulate the Focal Plane Array by generating pixel data for
the GT-VSF chip. The processed pixel data from the GT-VSF is passed to the GT-VTHR which
in turn passes processed data to the GT-VCLS and GT-VCTR chips. The functionality of the pro-
cessing chain is verified by reading the centroids of each object in the Focal Plane Array image
from the GT-VCTR host ports.

The GT-SPOBIJ board had been tested in a hardware—in-loop simulation with the Parallel
Function Processor, Seeker Scene Emulator, and the GT-DP processor. The simulation is running
the terminal phase of EXOSIM. The Parallel Function Processor sends the missile line of sight
information to Seeker Scene Emulator. The Seeker Scene Emulator generates Focal Plane Amray

22

images to the GT-SPOBJ. The GT-DP processor selects a target and sends its centroid to the Par-

allel Function Processor.

3.6. GT-DP/PFP Test Board

The GT-DP/PFP board interfaces the EP-Bus to the GT-DP processor module and the PFP
Crossbar. Two sets of FIFOs, one for each direction, are used for the communication between the
EP-Bus and the PFP crossbar. The interface with the GT-DP processor is through memory map-
ping on the EP-Bus. The basic functional blocks of the GT-DP/PFP board are shown in Figure 12.

EP-Bus

Status
Register

FIFO

Crossbar

Figure 12. GT-DP/PFP Basic Functional Blocks

3.6.1. Design

3.6.1.1. EP-Bus Address Mapping

The GT-DP/PFP board is mapped as device 12 on the EP-Bus, e.g. DS3..0=12. The decod-
ing of the EP-Bus address on the board is shown in Table 3.

23

Table 3. EP-Bus Address Mapping

A6 AS A4 Device Selected Valid Operations Data Width

0 0 ©0 GT-VSNI chip Read and Write 8 bits

0 0 1 GT-VDR chip Read and Write 16 bits

0 1 0 GT-VSEQ chip Read and Write 8 bits

0 1 1 PFP Crossbar Read and Write 8 bits

1 0 0 Status Register Read Only 14 bits
3.6.1.2. Interrupt Assignment

The interrupt assignment is shown in Table 4.

Table 4. EP-Bus Interrupt Assignment

Source Interrupt Description
APXB_EF# |Intr2 Data had arrived from the PFP
3.6.1.3. Status Register

The mapping of the status register is shown in Table 5.

Table §. Status Register Listing

Source AP-Bus Description

APXB_FF# |DO 0 indicates that the outgoing FIFO to the PFP is full

APXB_EF# |D1 0 indicates that the incoming FIFO contains data from PFP
3.6.1.4. EPLD Control

Three G16V8 EPLD chips are used to control the GT-DP/PFP test board. A general de-
scription of each of the function of the EPLD is given in the following sections. The source code

listings of the EPLD are given in Appendix D.

3.6.1.4.1. Xbar.pld
Xbar.pld is used to generate control signals for the PFP Crossbar interface.

3.6.1.4.2. Decl.pld

Dec1.pld generates the chip select signals for the GT-DP processor. The chip select signals
select the GT-VSEQ, GT-VDR, or GT-VSNI chip. In addition, Dec1.pld generates the read and

24

write control signals for the interface FIFO with the PFP and the device ready signal for the EP—
Bus. Decl.pld also allows the status of the interface FIFO to be read from the EP-Bus.

3.6.1.4.3. Dec2.pld

Dec2.pld controls the GT-DP/PFP board select signal and generates the read and write
control signals for the GT-DP processor.

3.6.1.5. Board Schematics
The GT-DP/PFP board schematics is shown in Appendix G.

3.6.2. Testing

The functional modules of the GT-DP is mapped onto the EP-Bus address space. Pro-
grams were downloaded to the GT-DP board from a PC-AT computer, through the AT-Bus to EP-
Bus interface board. The loader and utilities developed for the GT-DP Multibus I system (see sec-
tions 3.1 and 3.2) were ported to the GT-DP EP~-Bus system. All the application programs that
were run on the GT-DP Multibus I system “wvcre executed on the GT-DP/PFP board to verify its
functionality.

The GT-DP/PFP serves as an interface point for GT-SPOBJ, GT-DP, GT-EP (emulated
by a PC-AT computer through an interface board), and the Parallel Function Processor in the EX-
OSIM hardware—in—the-loop simulation. Prior to the hardware—in—the-loop simulation, patterns
of aaaa, 5555, ffff, 000, and random numbers were transfered between the GT-DP/PFP and the
Parallel Function Processor to verify that the interface hardware is working properly.

4. Summary and Assesment

The testing of the different modules of the GN&C processor is underway. The primary test
focus right now is on the GT-EP evaluation board. Testing on the board shall proceed according
to the plan outlined in section 3.4.3. Once the test result is available, the actual GT-EP board for
the GN&C processor will be designed.

A printed circuit board for the GT-VTF and GT-VNUC chips had been designed. The
board is now out for bid. It should be available when the two chips come out the chip fabrication
and testing.

The testing of the GN&C chip set had been proceeding smoothly. All four chips “or the
GT-DP processor work functionally as expected. The operating frequency is actually much better
than expected (from 6.6 Mhz to 10 Mhz). The GT-VSMS network chip is working functionally
as expected. The test, however, reveals an anomaly state on the GT-VSF chip when given an im-

25

proper sequence frame control signals. A reset does not entirely clear the chip to its power—up con-
dition after the GT-VSF chip received a sequence of improper frame control signals. The test also
reveals that the GT-VCTR chip requires the centroid data to be read consecutively without inter-
ruption. This is an unnecessary constraint that can be easily corrected. Both of these findings had
been reported to AHAT and simple design modifications had been made on the GT-VSF and the
GT-VCTR chips.

The GT-VIAG and GT-VDAG chips both reported errors while undergoing chip test. The
error on the GT-VIAG chip had been verified on the GT-EP evaluation board to be not true. The
chip is actually functioning properly. The problem might be due to an incorrect wiring on the IC
test fixture. The error on the GT-VDAG had not been confirmed on the GT-VDAG chip because
the problem would not occur under a normal operating condition. This issue is expected to be re-
solved as the testing on the GT-EP evaluation board is proceeding as planned.

A Focal Point Array frame buffer that interface directly to the EP_Bus had been developed.
The frame buffer can hold up to four frames of 128x128 pixel data. The board had been fabricated
and tested. The GT-SPOBJ board will be tested more extensively using the frame buffer.

In all, ten VLSI chips had been designed, fabricated, and tested. None requires a redesign
and refabrication. Not all testings had been completed. Testing is still proceeding. The problem
on the GT-VSF arised when an improper sequence of frame control signals was encountered. This
situation does not occur under a normal operating condition. Nonetheless, a design fixed had been
forwarded to the AHAT project. The problem on the GT-VCTR can be overcome in software by
disabling interrupts while reading the centroid data from the GT-VCTR chips. A design fix had
also been inserted into the AHAT chip design.

5. Test Schedule

Figure 13 shows the test schedule for the VLSI chip set that had been developed, namely,
the GT-VSEQ, GT-VDR, GT-VFPU, GT-VSNI, GT-VSM8, GT-VSF, GT-VTHR, GT-
VCTR, GT-VCLS, GT-VIAG, GT-VDAG, GT-VTF, and GT-VNUC. The next generation chip
set is too early in the development phase to call for a detail test schedules to be included in this
volume. A rough schedule is shown in volume 7.

26

3INPIYOIS UOIIEN[BAY PUB JSI], J0§SI0IJ DPND) €] 3an81§

doo-oyi-u—arempreyy
uonesau] DPND
uoneIgau] 1SOg—ung
uoneidaiy 1ISo0H-Dd
£SS1-d9-1D

SIS-LD
JLSLSAA-LO

GLL ONN) TdS-1LO
d3/sS-19

preod [eAg 43-19D
preod 1531 d:4d/dA-1LO
40ds-19

preog 1Sal, NdJIA—LO
preog 153, SINSA-LD
JMpoN da-LO

¥661 Ad

€661 Ad

661 Ad

1661 Ad

Appendix A : GAL Listings

28

NAME Runctrl;
Partno '000;
Date 08/30/90;

Revision 0.0;

Designer Dr. Tan;
Company Cerl;

Assembly FPU test board;
Location Pal4;

Device G1l6Vs;

/* Input */

Pin 1 = ¢lk_src; /* osc */
Pin 2 = osc;

Pin 3 = IMWTC;

Pin 4 = !ADR_16;

Pin 5 = BD_0;

Pin 6 = !BS;

/* Output */

Pin 12 = !wel;

Pin 13 = clk;
Pin 14 = osc_1;
Pin 15 = run;
Pin 16 = n_run;
Pin 17 = osc_2;
Pin 18 = clkl;
Pin 19 = !wel;

/* Logic Equations */

run.d = (BS & MWTC & ADR_16 & BD_0) # ((!BS # !MWTC # !ADR_16) & run};
wel = MWTC & !run;

wel = (MWTC & !run) # ((!osc) & run);
osc_1 = osc;

osc_2 = osc_1;

n_run = lrun;

clk = osc_1;

clkl = osc_l;

NAME Csctrl;

Partno 000;

Date 08/30/90;

Revision 0.0;

Designer Dr. Tan;

Company Cerl;

Assembly FPU test board;
Location Pall;

Device Glévs; /* EP310 */

/* Inputs */

Pin 1 = !ADR_13;
Pin 2 = !ADR_14;
pin 3 = !ADR_15;
Pin 4 = !ADR_16;
Pin 5 = clkl;
Pin 6 = !BS;

Pin 7 = run;

/* Outputs */

Pin 12 = !CS_0O;
Pin 13 = !CS_1;

Pin 14 = 'CS_2;
Pin 15 = !CS_3;
Pin 16 = !CS_4;
Pin 17 = !CS_5;
Pin 18 = !CS_6;
Pin 19 = !CS_7;

29

/* Logic Equations */

cs_7
cs_6
cs_5
cs_4
cs’3
cs_2
cs_1
cs_o

Bs

naOnmnnnNnn

1ADR_16
1ADR_16
1ADR_16
'ADR_16
1ADR_16
!ADR_16
'ADR_16
!ADR_16

Lo I B O I BN O)

ADR_15
ADR_15
ADR_15
ADR_15
YADR_15
1ADR_15
1ADR_15
1ADR_15

a3 o IR JBN BN BN BB)

ADR_14
ADR_14
'ADR_14
1ADR_14
ADR_14
ADR_14
'ADR_14
'ADR_14

noMenn N

ADR_13
'1ADR_13
ADR_13
ADR_13
ADR_13
!ADR_13
ADR_13
!ADR_13

LB OB AR B BN BN N)

trun
!run
frun
frun
trun
frun
'run
frun

run;
run;
run;
run;
run;
run;
run;
run;

NHame
Partno
Date
Revision
Designer
Company
Assenbly
Location
Device

Counterl;

000;

08/30/90;

0.0;

Dr. Tan;

Cerl;

¥PU test board;
Palé;

cl6vs;

/* Inputs */

Pin 1 =
Pin 2 =
Pin 3 =

clk;
cout;
run;

/* Output */

Pin 12 = cout0;

Pin 13 = pc_0;

Pin 14 = pc_1;

Pin 15 = pec 2;

Pin 16 = pc_3;

Pin 17 = pc_4;

Pin 18 = pc_5;

/* Logic Equations */

pc_0.d = (!pc_ 0 # cout) & run;

pc_l.d = (pc 0 & !pc_1 # !pc_0

pc_2.d = (pc_ 0 & pc_l & ipc 2 #

pc_ 3.d = (pc 0 & pc_l & pc_2 &
'{(pc. 0 & pc_l & pc_2) &

pc_4.d = (pc 0 & pc_lé& pc_2 &
!{pc_0 & pc_1l &€ pc 2 ¢

pc_5.d = (pc_ 0 & pc_1l& pc_2 &
'{pc_0 & pc_1l & pc 2 &

cout@ = pc 0 & pc_1l & pc2

Name Counter2;

Partno 000;

Date 09/30/90;

Revision 0.0;

Designer Dr. Tan;

Company Cerl;

Assembly FPU test board;

Location PALS;

Device G16V8;

/* Input */

Pin 1 = clk;

Pin 2 = coutl;

Pin 3 = run;

/* Output ¥/

Pin 12
Pin 13
Pin 14
Pin 15
Pin 16
Pin 17
Pin 18

L2 NN I I B A |

= (cout0d
= (coutd

cout;
pc_6;

Equations */

'pc_6

pc:6 & !'pc_7
pec_7 & pc_6
pc_7 & pc_6)

(cout0

&
[
&
! {cout0 ¢

&

/* original: coutl */
pc_l # cout) & run;

pc_l) & pc_2 # cout) & run;

pc_S5S # cout) & run;

{(pc_ 0 &
'lpc_3 #
pc_ 3 # cout) & run;
pc_3 & !pc_ 4 #
pc_3) & pc_ 4 * cout) & run;
pc_3 & pc4 & !'pc 5 ¢
pc_3 & pc_4) &
pe_3 & pc_4 & pcS;

'cout0 & pc_6

!(cout0 ¢ pc_6) & pc_7
'pc_8 #
pc_8 # cout) & run;

31

L]
L]

cout) & run;
cout) & run;

pc_9.d =
pc_lC.d =

pc_1l1l.d =

cout =

(cout0
! {cout0
{cout0
! (coutO
{cout0
! {cout0
run;

cout0

n N nehnn

pc_11

L oK SN SO BN N o)

[4

pc_2

e nnn

pc_9

nensnnn

'pc_9
pc_9
pc_6
pc_6)
pc 7
pc_7

pc_8

K7

LA AN I B

cout) & run;

!pc_10 #

pc_10 # cout) & run;
pc_6 & 'pc_11 &

pc_6) & pc_ll # cout)

pc_7 & pc_6;

NAMR
Partno
Date
Revision
Designer
Company
Assembly
Location
Device

/* Input

Pin
Pin
Pin
Pin
Pin
Pin
Pin

SO L W N

/* Output

Pin 12 =
Pin 13 =
Pin 14 =
Pin 15 =
Pin 16 =
Pin 17 =
Pin 18 =
Pin 19 =

/* Logic

o
o
(W]
LI D B I R NV]
o
0

Bectrl;
000;
08/30/90;
0.0;

Dr. Tan;
Cerl;

FPU test board;

Fal2;
G16VS;

*/

'ADR_13;
!ADR_14;
'ADR_15;
'ADR_16;
clkl;
!BS;
run;

*/

Equations */

1ADR_16
!ACR_16
1ADR_16
IADR_16
1ADR_16
1ADR_16
1ADR_16
1ADR_16

L B B B B LN)

&
a
&
&
&
&
&
&

ADR_15

AnD 16
avn a9

ADR_15
!ADR_15
'ADR_15
'ADR_15
1ADR_15

ADR_15

n

"N N

1ADR_14

AND 14
ava_ 43

&
ADR_14 &
ADR_14
ADR_14 &
'ADR_14 &
!ADR_14 &
'ADR_14 &

ADR_13

!AF\D 113

ADR_13
!ADR_13
ADR_13
'ADR_13
ADR_13
1ADR_13

i3

" h

NN nhnmn

NAMR Mbctrl;
Partno 000;
Date 08/30/90;

Revision 0.0;

Designer Dr. Tan;
Company Cerl;

Assenmbly FPU test board;
Location Pal3;

Device Gl6Vs;

/* Input */

Pin 1 = osc;

Pin 2 = !'MWTC;
Pin 3 = !MRDC;
Pin 4 = !ADR_16;
Pin 5 = !ADR_17;
Pin 6 = !'ADR_18;
Pin 7 = !ADR_19;

/* Output */

Pin 12 = MBdir;
Pin 13 = !Xack;
Pin 14 = Xackl;
Pin 15 = XackO;
Pin 17 = MBdirl;
Pin 18 = IBS;

Pin 19 = !MBen;

/* Logic Equations */

Xack0.D = !'Xack & Xackl & (MWTC # MRDC):;
Xackl.D = !Xack & !Xack0 & (MWTC # MRDC) #
Xackl & Xack0 & (MWTC # MRDC):;

/* if BS */
Xack.OE = BS;

Xack.D = (Xackl & Xack0 &« (MWTC # MRDC) #
Xack & !Xack0 & (MWTC # MRDC));

MBen = MWTC # MROC;

MBdir = MWIC;

MBdirl = MWTC;

BS -~ !ADR_19 & !ADR_18 & !ADR_17;

NAME Runctrl;
Partno 000;
Date 08/30/90;

Revision 0.0;

Designer Dr. Tan;
Company Cerl;

Assembly FPU test boarxd;
Location Pal4;

Device Glé6vse;

/* Input */

Pin 1 = clk_src; /* osc */
Pin 2 '= osc;

Pin 3 = !IMWTC;

Pin 4 = !ADR_16;

Pin 5 = BD_O0;

Pin 6 = !BS;

/* Output */

Pin 12 = !we0;

Pin 13 = clk;

Pin 14 = osc_1;
Pin 15 = run;

Pin 16 = n_run;
Pin 17 = osc_2;
Pin 18 = clkl;
Pin 19 = !wel;

/* Logic Equations */

run.d = (BS & MWTC & ADR_16 & BD_0) # ((!BS & !MWIC # !ADR_16) & run);
wel = MWTC & !run; -

wel = (MWTC & !'run) # (('osc) & run);

osc_1 = osc;

osc_2 = osc_l;

n_run = lrun;

clk = osc_1;

clkl = osc_l1;

35

Appendix B : Test Monitor Source Code

program testfpu;

uses

cons

var

ieee_cnv,

{$u e:\dp\dp_ comp\hex conv} hex_conv,

io,dos;
t
max_test vector = 4092;
{ logical }
fpu_and = $8;
fpu or = $9;
fpu_xor = $a;
fpu_notR = $b;
fpu_notS = Sc;
fpu passR = $14;
{ fixed }
fpu_add = $0;
fpu sub = $1;
fpu_mult = $2;
fpu rsub = $3;
{ float }
fpu_fadd = $10;
fpu_fsub = $11;
fpu fmult = $12;
fpu frsub = $13;
{ shift }
fpu_ror = $4;
fpu_rol = $5;
fpu_shr = $6;
fpu shl = §7;
{ special }
fpu_pack = $0d;
fpu float = $15;
fpu_seed = Se;
fpu_unp_exp = $18;
fpu_unp_man = $19;
fpu_rootexp = $1la;
fpu_rootman = $1b;
fpu_round = $f;
fpu_int_r = $16;
fpu_ int™s = $17;
fpu sin_ _sgn = $lc;

fpu_odd_neg = $1d;
fpu_chg_sgn = $le;
fpu tan_sgn = $1f;

{ test cases }
logical = 0;
iadd = 1;
imalt = 2;
fadd = 3;
fmult = 4;
shift = §;
special = 6;

bank,offset,i,address : word;
start_bank, end bank : word;

pattern : arrayTO .20] of word;

ch : char;

command : string;
debug : boolean;
rsign : integer;
ssign : integer;
test case : integer;

last_op, last_s,last_r : integer;
r,s : array[0..40957 of longint;

op : array(0..31) of word;
cflaqg, zflag : integer;
continuous : char;
stop_on_error : char;
count : integer;
test_cycle : longint;
no_error : longint;

procedure write error (procedure_name,message:string);
begin

writeln(’Error at procedure ', procedure_name,’

writeln(’ ’,message);
halt;

end;

37

11y

procedure mwrite (bank,offset,pattern:word);

begin

memw [segment : (bank shl 13) + offset] := pattern;
end;
function mread(bank,c€fset:word) :word;
begin

mread := memw[segment:(bank shl 13) + offset}];
end;
procedure verify{bank,offset,data,expdata:wc.d);
begin

if data <> expdata then

begin

writeln(’error at bank ’,bank,’ at location ’,word to_hex(offset));
writeln({’ written: ’,word_to_hex(expdata));
write (' read : ’,word_to_hex(data),’ <CR> ’); readln;
writeln;
end;
end;

procedure test_memory;
begin
stop_processor;
pattern{0]) := $1234;

pattern(1l] := $0000;
pattern{2] := $5555;
pattern{3] := Saaaa;
pattern{4] := Sffff;
pattern([S5] := $ff£00;
pattern[6] := SO0ff;

write(’test all banks ? ’); readln(ch);
if (ch = 'y’) or (ch = *Y’) then
begin
start_bank := 0; end _bank := 7;
end
else
begin
write(’Which bank to test ? ’);readln(start_bank);
end_bank := start_bank;
end;
begin
for bank := start_bank to end_bank do
begin
for § := 0 to 6 do
begin
address := 0;
writeln(’testing pattern ’,word_to_hex{pattern(i]),’ on bank ’,bank};
while address <= $lffe do
begin
mwrite (bank, address,pattern(i]);
verify(bank, address, mread (bank, address),pattern(i]);
address := address + 2;
end;
end;
address := 0;
writeln(’writing address on bank ’,bank)};
while address <= $1ffe do
begin
mwrite (bank, address, address);
address := address + 2;
end;
address := 0;
writeln(’reading address on bank ’,bank);
while address <= $lffe do
begin
verify(bank,address, mread(bank,address), address);
address := address + 2;
end;
end;
if (ch='y’) or (ch='Y’) then
begin
address := 0;
writeln(’writing address to all banks’);
repeat
mwrite (0, address, address);
address := address + 2;
until address = $fffe;
mwrite (0, address, address);
address := Q;
writeln(’reading address from all banks’);
repeat

38

verify(0,address, mread (0, address), address);
address := address + 2;
until address = S$fffe;
verify(0,address,mread (0, address), address);
end;
if (ch <> ’y’) and (ch <> *Y’) then exit;
end;
writeln(’memory testing completed’);
end; { of test_memory)}

procedure write_fpu_vector (address:word;r,s:longint;op:word);
var lsw,msw : longint;
begin
address := address shl 1;
lsw := $0000ffff and r;
msw := r shr 16;
mwrite (0, address, 1sw);
mwrite(l, address, msw);
verify (0, address,mread (0, address), lsw);
verify(l,address,mread(l, address),msw);
1lsw := $0000f£f£ff and s;
msw := s shr 16;
mwrite (2, address, lsw);
mwrite (3, address,msw);
verify(2, address,mread (2, address), 1lsw);
verify(3, address,mread (3, address),msw);
op := op or $0200; { set proc_run to 1l }
mwrite (4, address,op);
verify (4, address,mread (4, address),op);
end; { of write_fpu_vector }

procedure check_fpu_vector (address:word;r, s:longint;op:word);
var lsw,msw : longint;
begin
address := address shl 1;
lsw := $0000ffff and r;
msw := r shr 16;
verify(0,address,mread (0, address), lsw};
verify(l,address,mread(l, address),msw);
lsw := $0000ffff and s;
msw := s shr 16;
verify(2, address,mread (2, address}), Iswj;
verify(3,address,mread (3, address),msw);
op := op or $020C; { set proc_run to 1}
verify(4,address, mread (4, address),op);
mwrite (6, address+8,0);
mwrite(7,address+8,0);
verify(6, address, mread (6, address+8),0);
verify(7,address,mread(7, address+8),0);
end; { of write_fpu_vector }

function sm2twosc(d:longint) :longint;
begin
if (d and $80000000) <> O then
d := -(d and $O00ffffff)
else
d := d and $O00f£fffff;
sm2twosc := d;
end;

function twosc2sm(d:longint) :longint;
begin
if (d < 0) then
d := (-d and S$7fffffff) or $80000000;
if (d and $01000000) <> 0 then cflag := 1;
twosc2sm := d and $BOffffff;
end;

function compute_fadd(r s:longint):longint;
var
addsubsel,expdiff,bgta,explarge : longint;
output,mantlarge, intermediate,i : longint;
sexp, rexp, smant, rmant, ssign,rsign : longint:
overflow,underflow : longint;
begin
sexp := (s and $7£800000) shr 23;
rexp := (r and $7£800000) shr 23;
smant := s and $O007fffff;
if (s<>0) then smant := smant or $00800000;
rmant := r and S007fffff;
if (r<>0) then rmant := rmant or $00800000;

39

ssign := (s and $80000000) shr 31;
rsign := (r and $80000000) shr 31;

addsubsel := (1 xor ssign xor rsign);
expdiff := rexp - sexp;

bgta := 0; :

explarge := rexp;

output := rsign;

if (expdiff < 0) then
begin
expdiff := -expdiff;
bgta := 1;
explarge := sexp;
output := ssign;
end;

explarge := explarge + 1;

if (bgta = 0) then
begin
if (expdiff>=1) then
intermediate := smant shr (expdiff-1)

else
intermediate := smant shl 1;
mantlarge := rmant shl 1;
end
else
begin

if (expdiff>=1) then
intermediate := rmant shr (expdiff-1)
else
intermediate := rmant shl 1;
intermediate := rmant shr (expdiff-1);
mantlarge := smant shl 1;
end;
if (expdiff > 23) then intermediate := 0;

if (addsubsel = 1) then

intermediate := mantlarge + intermediate
else

intermediate := mantlarge - intermediate;

if (intermediate < 0) then

begin
intermediate := ~-intermediate;
output := output xor 1;

end;

intermediate := intermediate shr 1;

{writeln(’intermed ’,longint_to_hex(intermediate));}

i = 0;

while {(((intermediate and $01000000)=0) and (i<25)) do

begin
intermediate := intermediate shl 1;
explarge := explarge - 1;
i :=1+1;

end;

intermediate := intermediate shr 1;

overflow := (explarge and $100) shr 8;
underflow := (explarge and $80) shr 7;

if { (underflow and overflow) <> 0) then
begin
output := 0;
zflag := 1;
overflow := 0;
end
else
begin
output := output shl 31;
output := output or ((explarge and $ff) shl 23
output := output or (intermediate and $7fffff
end;

if (intermediate = 0) then
begin

output := 0;

zflag := 1;

overflow := 0;
end;

w.

cflag := 0;
{ if (output <> 0) then

writeln(’fmant’,longint_to_hex((output and $7ffffff) or $8000000))

else
writeln('fmant' longint_to_hex(0));
writeln(’'f »longint_to hex(output)),
writeln(’ fexp ,longint to hex({(output and $7£800000) shr 23)):

compute_fadd := output;
end; { of compute_fadd }

function compute_fmult (r,s:longint) :longint;
var
rmanthi, rmantlo, smanthi, smantlo : longint;
output,w,Xx,y,z,reshi, reslo, intermediate : longint;
sexp, rexp, smant, rmant, ssign,rsign : longint;
overflow,underflow : longint;
begin
sexp := (s and $7£800000) shr 23;
rexp := (r and $7£800000) shr 23;
smant := s and $007f£ffff;
if (s<>0) then smant := smant or $00800000;
rmant := r and S$007fffff;
if (r<>0) then rmant := rmant or $00800000;
ssign := (s and $80000000) shr 31;
rsign := (r and $80000000) shr 31;

rmantlo := rmant and S$ffff;
rmanthi := rmant shr 16;
smantlo := smant and S$ffff;
smanthi := smant shr 16;
w := rmantlo * smantlo;
x := rmanthi * smantlo;
y := rmantlo * smanthi;
:= rmanthi * smanthi;
intermediate := ((w shr 16) and S$ffff) + x + y;
reslo := { (intermediate shl 16) and $ffff0000) or (w and $ffff);
reshi := ((intermediate shr 16) and S$ffff) + z;

{ writeln(’rmant ’,longint_to_hex{rmant)})
writeln{’smant ’,longint_to_hex(smant))
writeln(’reshi ’,longint_to_hex(reshi))
writeln(’reslo ’,longint_to_hex(reslo));
}

intermediate := rexp + sexp

if ((reshi and $8000) <> O } then

begin
output := (reshi shl 8) or ((reslo shr 24) and $ff);
intermediate := intermediate - 126;

end

else

begin
output := (reshi shl 9) or ((reslo shr 23) and $1ff);
intermediate := intermediate - 127;

end;

.
[
.
’
»
’
’

overflow := (intermediate and $100) shr 8;
cflag := Q;
zflag := 0;
underflow := (((not rexp) and (not sexp)) shr 7) and 1;
if ((overflow and underflow) <> 0) then
begin
output := 0;
2flag := 1;
overflow := 0;
end
else
begin
output := output and $Tfffff;
output := output or ((ssign xor rsign) shl 31);
doutput := output or ((intermediate and $ff) shl 23);
end;

{if ((reshi or reslo) = 0) then
begin

output := 0;

zflag := 1;

overflow := 0;
end;

41

compute_fmult := output;

end; { of compute_fmult }

function compute_float (r:longint):longint;

var

explarge : longint;

output, intermediate,i : longint;
rexp, rmant, rsign : longint;
overflow,underflow : longint;

begin

rmant
rsign

:= r and SOQffffff;
:= (r and $80000000) shr 31;

explarge := $97;
intermediate := rmant;
1 :=0;

while
begin

{ ((intermediate and $01000000)=0) and (i<25)) do

intermediate := intermediate shl 1;
explarge := explarge - 1;
i :=1+1;

end;

intermediate := intermediate shr 1;

overflow := (explarge and $100) shr 8;
underflow := (explarge and $80) shr 7;

if ((underflow and overflow) <> 0) then

begin

output := 0;
zflag := 1;
overflow := Q;

end
else
begin

output := rsign shl 31;
output := output or ((explarge and $£ff) shl 23);
output := output or (intermediate and $7fffff);

end;

if (intermediate = 0) then

begin

output := 0;
zflag := 1;
overflow := 0;

end;

cflag

= 07

compute_float := output;

end; { of compute_float }

function compute_unp_exp(r:longint) :longint;

var

explarge
output, intermediate,i : longint;
rexp, rmant,rsign : longint;
overflow,underflow : longint;

begin

: longint;

rexp := (r shr 23) and $ff;

rsign

= 0;

rexp := rexp -~ 127;
if (rexp < 0) then
begin
rexp := -rexp;
rsign := 1;
end;

explarge := $97;
intermediate := rexp;
i :=0;

while
begin

(((intermediate and $01000000)=0) and (i<25)) do

intermediate := intermediate shl 1;
explarge := explarge - 1;

i
end;

t= 1+ 1;

intermediate := intermediate shr 1;

output := rsign shl 31;

output := output or ((explarge and $ff) shl 23);
output := output or (intermediate and S$7fffff);
zflag := 0;

42

if (intermediate = 0) then
begin

output := 0;

zflag := 1;

overflow := 0;
end;

cflag := 0;
compute_unp_exp := output;

end;{ of compute_unp_exp }

function compute_int(r:longint;round:integer) :longint;
var
expdiff, bgta, reshi : longint;
output, intermediate,carryin : longint;
rexp, rmant,rsign : longint;
overflow,underflow : longint;
begin
rexp := (r and $7£800000) shr 23;
rmant := r and $007fffff;
if (r<>0) then rmant := rmant or $00800000;
rsign := (r and $80000000) shr 31;

expdiff := $00000096 - rexp;
reshi := $96;
intermediate := rmant;
bgta := 1;
if (expdiff < 0) then
begin
reshi := rexp;
expdiff := -expdiff;
bgta := 0;
end;

if (expdiff > 0) then

carryin := (intermediate shr (expdiff - 1)) and 1
else

carryin := 0;

intermediate := intermediate shr (expdiff * bgta);

if ((round=1l) and (bgta=l)) then intermediate := intermediate + carryin;
if ((bgta=1) and (expdiff>24)) then intermediate := 0;

reshi := reshi + 1;

overflow := 0;

cflag := 0;

zflag := 0;

if (reshi <> $97) then overflow := 1;
if (intermediate = 0) then zflag := 1;

if (zflag=1l) then
output := 0
else
begin
output := rsign shl 31;
output := output or {(intermediate and Sffffff);
end;

compute_int := output;
end:{ of compute_int }

procedure check_fpu_result (address:word;r, s:longint;op:word);
var f,msw,lsw,readf : longint;
tr,ts : longint;
rsign,ssign : longint;
sr,ss : single;
readcflaqg, readzflag : integer;
i : integer;
sexp, rexp, fexp, smant, rmant, fmant : longint;
Year,Month, Day,DayOfWeek : word;
Hour,Minute, Second, Secl00 : word;
begin
cflag := 0;
zflag := 0;
address := (address+4) shl 1;
case op of
fpu_and: f := r and s;

fpu or ¢ f := r or s;
fpu xor : f := r xor s;
fpu_notR: £ := not r;
fpu_notS: f := not s;

43

fpu_passR: f := r;
fpu add : = twosc2sm(sm2twosc(r) + sm2twosc(s));

f:
fpu sub : f := twosc2sm({sm2twosc(r) - sml2twosc(s));
fpu rsub : f := twosc2sm(sm2twosc(s) - sm2twosc(r));
fpu_mult :
begin

ssign := s and $80000000;
rsign := r and $80000000;
tr :=r and SEffffff;
ts := s and S$ffffff;
f := 0;
for 1 := 0 to 23 do
begin
if (ts and 1) = 1 then f := f + tr;
tr := tr shl 1; ts := ts shr 1;
end;
if (f and $01000000) <> 0 then cflag := 1;
if £f = 0 then
begin
rsign := 0;
ssign := 0;

end;
f := (rsign xor ssign) or (f and $O0ffffff);
end;
{ float }
fpu_fadd : f := compute_fadd(r,s);
fpu fsub : f := compute_ “fadd (r, (s xor $80000000));
fpu fmult: f := compute_ “fmult (r,s);
fpu frsub: f := compute_ ~fadd ({r xor $80000000),s);
fpu ror : £ := ((r shl (32 - (s and $1f))) or (r shr (s and $1f))});
fpu_rol : f := ((r shr (32 - (s and $1f))) or (r shl (s and $1f)));
fpu shr : £ := r shr (s and $1f);
fpu shl : £ := r shl (s and $1f);
fpu_pack :
begin

f := r and S$ffffff;
if ({(r and $80000000)=0) then
= 127 +

else

f = 127 - £;
cflag := 0;
zflag := 0;
if ((£ < 0) or ((f and $££f)=0))then

begin
f := 0;
zflag := 1;
end;
f:= ((f shl 23) and $7£800000);

end;
fpu_float : f := compute_float(r);
fpu seed :

begin
f := (r and $7£800000) shr 23;
f := £ + 2;
cflag = 0;
zflag := 0;
if ((r and S7fffffff)=0) then
begin
zflag := 1;
f := 0;
end
else
begin

f := (r and $80000000) or ((f and $ff) shl 23) or $400000;
f := f xor $7£800000;
end;
end;
fpu_unp_exp
fpu_unp_man
begIn
f := (s and $807£££fff) or $3£800000;
zflag := 0;
cflag := 0;
if ((s and S7fffffff) = 0) then
begin
zflag := 1;
f :=0;
end;
end;
fpu_rootexp :
begin

f:> compute_unp_exp(r);

if ({(r and $80000000)=0) then
if ((r and $00800000) <> 0) then
f := ((r shr 24) and $7f) + 64
else
f := ((r shr 24) and $7f) + 63
else ’
if ((r and $00800000) <> 0) then
f := -((r shr 24) and $7f) + 64
else
f := -((r shr 24) and $7f) + €3;
if (f<0) then f := -f;
£ := (f and $ff) shl 23;
cflag := 0;
zflag := 0;
if ((r and S7fffff£ff)=0) then
begin
zflag := 1;
f :=0;
end;
end;
fpu rootman :
begin
if ((s and $00800000) = 0) then
f := (s and $007f£f££f£f) or $40000000

else
f := (s and $O007fffff) or $3£800000;
cflag := 0;
zflag := 0;
if ((s and $7f£fffff)=0) then
begin
zflag = 1;
f := 0;
end;
end;
fpu_round : f:= compute_int(r,1);
fpu int_r : f:= compute_int(r,0);
fpu int™s : f:= compute_int (s,0);
fpu sin_sgn :
begin

f := (s xor (r shl 31)) and $80000000;
f := £ or (s and S$7fEfff£ff);
zflag := 0;
cflag := 0;
if ((f and STL£f££f£££f)=0) then
begin
zflag := 1;
f := 0;
end;
end;
fpu_odd_neg :
begin
f := (s shl 31) or (s and S$ffffff);
zflag := 0;
cflag := 0;
if ((s and SEffffff)=0) then
begin
zflag := 1;
£ := 0;
end;
end;
fpu_chg_sgn :
begin
f := (r and $80000000) or (s and S$7fffffff);
zflag := 0;
cflag := 0;
if ((s and $7Lffff£ff)=0) then
begin
zflag := 1;
f := 0;
end;
end;
fpu_tan_sgn :
begIn
£ := (r shr 31) xor (s shr 31) xor r;
f := £ shl 31;
f := f or (s and S7fffffff);
cflag := 0;
zflag := 0;
if ((f and STffff£fff)=0) then
begin
zflag := 1;

45

f := 0;
end;

end;
end; { of opcode case }
if (£=0) then zflag := 1 else zflag := 0;
lsw := mread(6,address);
msw := mread(7,address);
readf := (msw shl 16) or lsw;
lsw := mread(5, address);
readcflag := (lsw and 1);
readzflag := (lsw and 2) shr 1;
if (readf <> f) or (readcflag <> cflag) or (readzflag <> zflag) or (debug) then
begin

if (readf <> f) or (readcflag <> cflag) then no_error := no_error + 1;

write(word_to_hex(address shr 2),’:’, longint_to hex(r), oy

case op of

fpu_and : write(’and ’});
fpu_or : write(’or ');
fpu_xor : write{’xor ‘);
fpu_add : write(’fix+ ’);
fpu sub : write(’fix- ’);

)i

fpu_| “mult: write(’fix*
fpu_rsub: write(’fixr-’);
fpu passr: write(’passR’);

fpu_pack write(’pack exp R’);
fpu_float write(’float R’);
fpu_seed write(’inv seed R’);
fpu_unp_exp write(’unpack exp R’);
'y,

fpu_unp_man
fpu_rootexp
fpu rootman

write (‘unpack mant S
write(’root exp R’);
write(’'root mant S’);

fpu round write(’round R’);

fpu int r write{’truncate R’);
fpu int”s write(’truncate S§’);
fpu_sin_sgn write(’sine sign’);
fpu_odd_neg : write(’odd negative S§');
fpu chg_sgn write(’change sign’);

fpu tan_sgn : write(’tangent sign’);
fpu_fadd : write(’float+ ’);
fpu fsub : write(’float- ’);
fpu_ “fmult: write(’float* *);
fpu frsub: write(’'floatr-’);
end; .
write(’ ’,longint_to_hex(s),’ -> ');
write(longint to hex(f),'[',zflag, ' ,cflaq,'] {pc) ’);
write(longint™to hex(teadf),'[',teadzflag, * ,readcflag,’) (fpu) ’);
if (readf <> ¥) or (readcflag <> cflag) then
begin
GetTime (Hour,Minute, Second, Sec100);
GetDate (Year,Month, Day,DayQfWeek) ;
write(’Date: ’,Month,’/’,Day,’/’,Year,’ at ‘,Hour,’:’,Minute,’:’,Second,’ ’);
if (command = ‘tall’) then writeln(’Error at cycle ’,count,’.’)
else writeln(’Error at cycle ’,test_cycle,’.’);
end;
if (stop_on_error = ’'y’) then readln else writeln;
end; { of readf <> f}
end; { of check_fpu_result }

procedure generate_vectors(phase : integer);
var 1,3,k : integer;
begin
address := 2;
writeln(’generating test vectors phase ’,phase);
case phase of
o.
for k := 0 to last_op do
for § := 0 to last_s do
for 4 := 0 to last_r do
begin
if address >= max_test vector then write error(’’,’too many test vectors’);
write_fpu_vector (address,r{i],s{3j],op(k]T;
address := address + 1;
end;
1.
for k := 0 to last_op do
for i := 0 to last _r do
for j := 0 to last_s do
begin
if address >= max_test_vector then write error(’’,’too many test vectors’);
write fpu_vector(address,r(i],s(3],op(k]};
address := address + 1;

end;
2:
for 3 := 0 to last_s do
for 1 := 0 to last_r do
for k := 0 to last_op do
begin
if address >= max_test_vector then write error(’’,’too many
write_fpu vector (address,r{i]},s(j],op(k]);
address := address + 1;
end;
end;
end; { of generate_vectors }

procedure wait;
var i1 : integer;
begin
for i := 0 to 4095 do;
end; { of wait }

Procedure check_vectors({phase : integer);
var 1,3,k : integer;
begin
writeln(’checking test vectors phase ’,phase);
stop_processor;
address := 2;
case phase of
0:
for k := 0 to last_op do
for § := 0 to last_s do
for 1 := 0 to last r do
begin -
check_fpu_vector (address,r(i],s(]j),oplk]);
address := address + 1;
end;
1:
for k := 0 to last_op do
for 1 := 0 to last_r do
for jJ := 0 to last_s do
begin
check_fpu_vector (address,r{il,s(j],op(k]);
address := address + 1;
end
2:
for j := 0 to last_s do
for 1 := 0 to last_r do
for k := 0 to last_op do
begin
check_fpu_vector (address, r{il,s[]j),oplk]);
address := address + 1;
end;
end;
end; { of check_vectors }

procedure check_results(phase : integer);
var 1,3,k : integer;
begin
writeln(’checking test result’);
start_processor;
wait;
address := 2;
stop_processor;
case phase of
0 :
for k := 0 to last_op do
for j := 0 to last_s do
for i := 0 to last r do
begin
if not odd(k) then
check_fpu_result {address, r(i],s(]],op(k]);
address :« address + 1;
end;
1:
for k := 0 to last_op do
for 1 := 0 to last_r do
for j := 0 to last_s do
begin
if not odd(k) then
check_fpu_resul. (address, r(i],s(j],op(k]);
address := address + 1;
end;
2 :
for j := 0 to last_s do

47

test vectors’);

for 1 := 0 to last r do

for k := 0 to last_op do

begin
if not odd(k) then

check_fpu_ result (address,r(i},s(j},op(k]);

address” := address + 1;

end;

end;
end; { of check_result }

procedure test_random;
var 1,3 : integer;
begin
writeln(’-- random pattern test’);
stop_processor;
writeln(’generate vectors’);
j = 0;
for i := 2 to 4090 do
begin
r{i}] := random(S$Sffff);
r{i] := (r{i) shl 16) or random($£ffff);
s(i] := r(i);
write_fpu_vector(i,r([i),s[i],op(]]);
if § = last_op then j := 0 else j := j+1;

end;

writeln(’checking vectors’);
j = 0;

for 1 := 2 to 4090 do

begin

check_fpu_vector (i, r(i],s(i],op(]i]);

if j = last_op chen j := 0 else j := j+l1;
end;
start_processor;
wait;
writeln(’checking fpu results’);
stop_processor;
j = 0;
for 1 := 2 to 4090 do
begin

if not odd(j) then

check_ fpu_result(i,r{il,slil,opl}));

if § = Tast_op then j := 0 else j := j+1;

end;
end; { of test_random }

procedure test_logical;

var
phase : integer;
begin
writeln{’-- xor/and/or/passR tests --');

test case := logical;

op(0T := £pu _passR; op(l] := not op[0];
op(2] := fpu_and; op(3] := not op(2];
opl(4) := fpu_ot; op(5) := not opl4];
op(6] := fpu_xor; op[7) := not op(6];
op{8] := fpu_xor; op{9] := not op[€];
last_op := 97
test cycle = 0;
repeat
writeln(’---- logical test cycle ’,test_cycle,’ ---');

test_cycle := test_cycle + 1;
writeln(’-- fixed pattern test’);
c[0] := $30000000; r(l] := SEEEffEff; r{2] := $55555555; r[3] := $aaaaaaaa;
r{4) := SEEELEFEE; (5] := $00000000; r[6]) := $12345678; r[7] := $9abcdefl;
last r := 7;
$[0] := $00000000; s[1) := SEfLFfFfff; s(2) := $55555555; s[3] := $aaaaaaaa;
s[4] := SEEFFFEFE; (5] := $00000000; s{6]) := $12345678; s{7] := $9%abcdefl;
last s := 7;
for phase := 0 to 2 do
begin
generate_vectors(phase);
check vectors(phase),
check_results(phase);
end;
test random;
until Tcontinuous <> y’) and (continuous <> ’Y’);
end; { of test_logical }

procedure test_ladd;
var

phase : integer;
begin

48

test_case := iadd;
test cycle = 1;
writeln(’begin integer add/sub/rsub tests’);

op[0] := fpu_add; op{l] := not opl0];
opl2] := fpu sub; op(3] := not op(2];
op{4] := fpu_rsub; op(5] := not op(4];
last_op := 57

test_cycle := 1;
repeat
writeln(’---~ integer add test cycle ’,test_cycle,’ ---"};
test_cycle := test_cycle + 1;
writéln(’-- fixed pattern test’);
r{0] := $00000000; r(l] := SOOFfffff; r(2]) := $00555555; r(3] := $00aaaaaa;
r[4) := $00000001; r[S] := $00123456; r(6]) = $00abcdef; r{7] := $BOffffff;
r(8] := $80555555; r(9] := $80aaaaaa; r(10]:= $80000001; r(l1l]:= $80123456;
r{12]):= $80abcdef;
last__ r 1= 12,
s{0]) := $00000000; s[1)
s[4] := $00000001; s{S}
s(8] := $80555555; s([9]
s[12]) := $80abcdef;
last s := 12;
for phase := 0 to 2 do
begin
generate_vectors (phase);
check_vectors (phase) ;
check tesults(phase),
end;
test random;
until {continuous <> ’y’} and (continuous <> ‘Y’);
end; (of test_fix }

= SO0LEfEff; s(2] := $00555555; s{3] := $00aaaaaa;
$00123456; s{6] := $00abcdef; s[7) := $BOffffff;
= $80aaaaaa; s(10):= $80000001; s(11]:= $80123456;

procedure test_imult;
var
phase : integer;
begin
test case := imult;
test cycle 1= 1;
writeln(’begin integer mult tests’);

op{0] := fpu_mult; op[l] := not op(0];
last _op := 1;

test_cycle := 1;
repeat
writeln(’---- integer mult test cycle ’,test cycle,’ --~');
test_cycle := test_cycle + 1; -
writeln(’-- fixed pattern test’);
r[0) := $00000000;

r{1) := SOOffffff; r(2) := $00aaaaaa; r{3] := $00555555;

r[4] := SO0000fff; r(S5) := $00000aaa; ri6) := $00000555; r(7] := SOOffffff;
r(8] := $8000000;

r[9) := SBOffffff; r[10] := $B80aaaaaa; r(ll] := $80555555;

r[12] := $80000fff; r(13) := $80000aaa; r[14] := $80000555; r[15] := $8Offffff;
last_r := 15;

s[0]) := $00000000;

s[1] := SOOQLfffff; s(2] := $00aaaaaa; s3] := $00555555:

s[4] := $O0000fff; s[5] := $00000aaa; s[6] := $00000555; s(?7] := SOOffffff;
s[8) := $8000000;

s[9] := SBOffffff; s{10) := $B80aaaaaa; s(1l1l] := $80555555;

s[12) := $80000fff; s(13] := $80000aaa; s{14) := $80000555; s{15] := SBOffffff;

last_s := 15;
for phase := 0 to 2 do
begin
generate_vectors(phase);
check_vectors(phase);
check_results(phase);
end;
test_random;
until (continuous <> ’‘y’) and (continuous <> ’'Y’);
end; { of test_imult }

procedure test_fmult;
var
phase : integer;
begin
test case := fmult;
test cycle 1= 17
writeln(’begin float mult tests’);

49

op({0] := fpu_fmult; op(l] := not op[0];
last_op := 1;

test_cycle := 1;

repeat
writeln(’--~- floating mult test cycle
test_cycle := test_cycle + 1;
writeln(’-- fixed pattern test’);
r{0] := $00000000;

',test_cycle,' -—=');

rf{l]) := S3IfEfEf£ff; r(2) := $3faaaaaa; r(3] := $3£555555;
r[4) := $00000fff; r[S) := $00000aaa; r[6) := $7£000555; r[7] := STEfffffff;

r(8] := $08000000;

r(9) := Sbfffffff; r(10] := $bfaaaaaa; r([ll] := $b£f555555;

r[(12] := $80000f£ff; r([13] := $80000aaa;
last_r := 15;
s[0]} := $00000000;

r[14] := $££000555; r([1S) := SEEffffff;

s[1) := S3IfEfffff; s[2] := $3faaaaaa; s3] := $3£555555;
s[4] := $00000fff; s[S5] := $000002aa; s[6] := $T£000555; s[7]) := STEEEFEFf;

s8] := $8000000;

8(9] := Sbfffffff; s(10] := Sbfaaaaaa; s[ll] := $bf555555;

s[12) := $80000fff; s{13) := $80000aaa;

last_s := 15;

for phase := 0 to 2 do

begin
generate_vectors (phase);
check_vectors (phase);
check_results(phase);

end;

test random;

until {continuous <> ’y’) and (continuous
end; { of test_fmult }

procedure test_fadd;
var
phase : integer;
begin
test_case := fadd;
test_cycle := 1;
writeln(’begin floating point add tests’);

op[0] := fpu_fadd; op(l] := not op(0];
op(2] := fpu_fsub; op{3] := not op(2];
op(4]) := fpu_frsub; op(5] := not op(4];
last_op := 5;

test_cycle := 1;
repeat
writeln(’---- floating add test cycle '
test_cycle := test_cycle + 1;
writeln(’-- fixed pattern test’);
r{0) := $3£000000;
rf{l]) := SIEEEEEEE; r(2] := $3faaaaaa; ri
r(S] := $7£000000; r(6] := $2a800000; r(
r(9)] := $bf000000;
r{10} := Sbfffffff; r(ll] := $bfaaaaaa;
r(l14])] := $££f000000; r(15] := $aa800000;
last_r := 17;
s[0] := $3£000000;
s(1) := SIfFfEfEff; s{2] := $3faaaaaa; si
s(S] := $7£000000; s([6] := $2a800000; s{
s{9]) := $bf000000;
${10] := SOEfffffff; s(1ll) := $bfaaaaaa;
s[14] := $££000000; s(15) := $aaB800000;
last_s := 17;
for phase := 0 to 2 do
begin
generate_vectors(phase);
check _vectors(phase);
check_results(phase);
end;
test random;
until {continuous <> ’y’) and (continuous
end; { of test_ fadd }

procedure test_shift;

var
phase : integer;
var i : integer;
begin

test case := shift;
test cycle := 1;
writeln(’'begin ror/rol/shr/shl tests’);

50

s[14) := $££000555; s[15] := SEEffffff;

<> 'Y*);

(test _cycle,’ ---');

3]} := $3£555555; r(4)

== $3£000001;
7] := $55000000; r(8] := §

00800000;
r{12) := $b£fS555555; r[13] := $bf000001;
r{16] := $d45000000; r([17] := $80800000;
3] := $3£555555; s[4] := $3£000001;
7] := $55000000; s(8] := $00800000;

s[12] := $bf555555; s[13]) := $bf000001;
s[16] := $d45000000; s[17) := $80800000;

<> 'Y’);

op[0] := fpu_ror; op(l] := not opi0];
op{2] := fpu_rol; op(3] := not op(2];
opl[4] := fpu_shr; op(S] := not opl4];
op[6] := fpu_shl; op(7] := not op(6];
last_op := 13

. oo o0 by

test_cycle := 1;
repeat
writeln(’~---- ror/rol/shr/shl test cycle ’,test_cycle,’ ---'};
test_cycle := test _cycle + 1;
writeln{’-- fixed pattern test’);
r{0] := $00000000;
r[l] := SEEfFFELE; r(2) := Saaaaaaaa; r[3] := $55555555; r([4] := $01234567;
r[5] := $89%abcdef;
last r := 5;
for T := 0 to 31 do s[i]) := i;
last_s := 31;
for phase := 0 to 2 do
begin
generate_vectors (phase);
check_vectors (phase);
check_results (phase);
end;
test random;
until {continuous <> ‘y’) and (continuous <> ’Y’);
end; { of test_shift }

procedure test_specialO;
var
phase : integer;
begin
test_case := special;
test_cycle := 1;
writeln(’Testing Pack Exp and Float’);
op{0] := fpu_pack; op(l] := not op(0];
op(2] := fpu_float; op[3] := not op(0];
last_op := 3;
r[0] = 1; r{1]) := 4; r[2] := 16; r{(3] := 64; ri4] := 256;
r(5) := SEEffff;
r{6] := $80000001; r(7]) := $80000004; r(8] := $80000010;
r[9]) := $80000040; r([10) := $80000100; r([11l) := $BOffffff;
last_r := 11;
s(0) := 0; s{1] := not s{0];
last_s := 1;
repeat
writeln(’---- special test 0 cycle ’,test_cycle,’ -—=');
test_cycle := test cycle + 1;
for phase := 0 to 2 do
begin
generate_vectors (phase);
check_vectors (phase);
check_results(phase);
end;
test random;
until {continuous <> ‘y’) and (continuous <> ‘Y’);
end; (of test_speciall }

procedure test_speciall;

var
phase : integer;

begin
test_case := special;
test _cycle := 1;
writeln(’Testing seed, unp_exp and unp_man, rootexp, rootman’);
op(0] := fpu_seed; op{l] := not op(0];
op(2] := fpu_unp_exp; op[3] := not opl(0];
op(4]} := fpu_unp_man; op[S] := not opl(0];
op{6] := fpu_rootexp; op(7] := not op(0};
op[8) := fpu_rootman; op[9] := not op(0]}:
last_op := 9;
r(0] := $00000000;
r{l) := S3IEfEfLff;
r(2) := $00000££f;
r(3] := $7£000555;
r(4] := $08000000;
r{S5}) := SHEffffff;
r(6} := $SBOOOOfff;
r(7] := $££000555;
last r := 7;

s{0) := $00000000;
s(1) := SIFELFLEL;
s(2) := $00000fff;

51

s3] :~ $7£000555;

s{4] := $08000000;

s{5] := SbEffffff;

s[6] := $80000fff;

s{7] := $££000555;

last_s := 7;

repeat
writeln(’---- special test 1 cycle ’, test_cycle,’

test_cycle := test cycle + 1;
for phase := 0 to 2 do
begin
generate_vectors (phase);
check_vectors(phase);
check_results (phase);
end;
test_random;
until Tcontinuous <> ’y’) and (continuous <> ’Y’);
end; { of test_speciall }

procedure test_special2;

var
phase : integer;

begin
test_case := special;
test_cycle := 1;
writeln(’Testing Round and Trunc/Int’);
op(0] := fpu_round; op[l] := not op(0];
op(2) := fpu_int_r; op(3] := not op(0];
opl4] := fpu_int_s; op(5] := not op(0];
last_op := 5;
r[0]) := $00000000;

r(1] := SIEEELE£fE;
r(2) := $46000££f;
r(3] := $3£000555;
r{4] := $4b000000;
r(5] := Sbfffffff;
r[6] := $c6000fff;
r(7) := $b£f000555;
last_r := 7;

s{0] := $00000000;
s[1) := SIEELELEE;
s[2] := $46000fff;
s(3} := $3£000555;
s{4) := $4b000000;
s{5) := SBEffffff;
s[6] := $c6000fff;
s(7] := $bf000SSS;
last_s := 7;

repeat
writeln(’---- special test 2 cycle ’,test_cycle,’

test_cycle := test cycle + 1;
for phase := 0 to 2 do
begin
generate_vectors(phase);
check_vectors(phase);
check_results(phase);
end;
test_random;
until {(continuous <> ’y’) and (continuous <> 'Y’);
end; { of test_special? }

procedure test_speciall;
var
phase : integer;
begin
test_case := specilal;
test _cycle := 1;
writeln(’Testing Special Sign Manipulation’);
op(0] := fpu_sin_sgn; op[l] := not op(0];
op(2] := fpu_odd_neg; op[3] := not op{0];
op(4) := fpu_chg_sgn; op(5] := not op[0];
op{6) := fpu_tan_sgn; op(7) := not opl[0);
last_op := 7;
r{0] := $00000000;
r{l] := $00000001;
r(2] := $80000010;
r(3] := $80000001;
r{4) := $3£800000;
r{5) := $3£800001;
c(6] := $b£800010;
r(7] := $bf800001;
last r := 7;

52

-==1);

—

s{0] := $00000000;
s(1] := $00000001;
s{2] := $80000010;
s[3] := $80000001;
s[4] := $3£800000;
2{S] := $3£800001;
3[6] := $bf800010;
s(7] := $bf800001;
last_s := 7;
repeat
writeln(’---- special test 3 cycle ’,test_cycle,’ ---'});

test_cycle := test _cycle + 1;
for phase := 0 to Z do
begin
generate_vectors(phase);
check vectors(phase),
check_results(phase);
end;
test random;
until {continuous <> ’y’) and (continuous <> ’Y’);
end; (of test_specialld)

procedure substitute word;
var start_address, data : word;
xd : string;
begin
write(’start address ? ’'); readln(start_address);
if odd(start_address) then start_ address := start_address - 1;
repeat
write(word_to_hex({start_ address),’:’,word_to_hex(mread(bank, start_address)));
write{’ ->"’); readln(xd);
if xd <> ‘quit’ then
begin
data := hex_to_word(xd);
mwrite(bank start _address,data);
verify (bank, address, mread (bank, start_address),data);
start_address := start_address + 2;
end;
until xd = ‘quit’;
end; { of substitute_word)}

procedure display word;
var i,start_address, no_word : word;
begin
write(’start address ? ’);readln(start_address);
if odd(start_address) then start_address := start_address - 1;
write(’no of words ? ‘);readln(nc _word) ;
writeln(’memory bank ’,bank);
i := start_address;
while 1 <= (start address + no _word*2) do
begin
writeln(wgrd_to_hex(i),':',word_to_hex(mread(bank,i))):
1 = 4 + 2;
end;
end; { of display_ word }

procedure select_bank;
begin

write(’bank : ’,bank,’ -> ’);readln(bank);
end; { of select_bank }

procedure t;
begin
stop_ processor;
for := 0 to 32 do
begin
mwrite{(4,1i shl 1,1);
verify(4,1 shl 1,mread(4,1 shl 1),1);
end;
start_processor;
end;

procedure toggle_debug;
begin
if debug = true then
begin
debug := false;
writeln(’debugging off’);
end
else
begin
debug := true;

53

writeln(’debugging on’);
end;
end;

Procedure test_all;
var local_cont : char;
begin
local_cont := continuous;
continuous := ‘n’;
count := 1;
repeat
writeln(’ *** Test all functions *** Cycle /,count,’ (errors = ’,no error,’) *¥*r);
test_logical; T
writeln(l**tttt***ﬁiiiiitttt*ttItItttit*ii**iittttt****i*t*t*ttl);

test_iadd;
’
writeln(*t*!i*i*itt**ittt*t**it*tii*ttiii*tii**t****ii**tt*ti*l);

test_fadd;
’
writeln(***it*ttt*ii**t*i**ii*ti**tii*tiitii'it*ittiiitiiitittl);

test_imult;
’
WElteln (/R A A AR AR kAR AR AT RN R R AR RN AR AR AR AR AR WAL) o

test_fmult;
4
"riteln('tt!ttitt!tttﬁ***ttitttttﬁ*t*titt"ﬁ't**'*tttﬁttﬁ*tt**');

test_shift;
’ .
wtiteln(iitﬁtiii*ii*iitttiitti**'titt*ii*'*ittt'tt*i*ttt'**.**I),

test speciall;

"riteln('tttt*ﬁttt*tttt***iiii.i**i**iiii*ii*ttttli*t*i**ii*i**l);

test_speciall;
’ -
writeln(t*ttttt***ti**tt****t’t*ttt#!t*it***tt******t!*tt**iti'),

test special2;

writeln(’i*iittﬁiiiiittt*ti*ttt*'***ti*t*tt*tt*i**tttttt't*tt*tl):

test _speciall;
writeln('ttt**ttt!iﬁ****itiiittt**ittti*'******i*iti**'*i***t*il);
count := count + 1;
until (local_cont <> ’y’) and (local_cont <> ’Y’);
continuous := local cont;
end; -

begin
debug := false;
continuous 3= ’n’;
stop_on_error := ’y’;
no_error := 0;)
writeln (’FPU Test Monitor’);
stop_processor;
while true do
begin
write(’>’); readln(command);
if command = ‘help’ then

begin
writeln(’tmem test memory’);
writeln(‘tlog test xor/and/or/passR’);
writeln({’tiadd test integer add/sub/rsub’);
writeln(’timult test integer mult’);
writeln(’tfadd test floating point add’);
writeln(’tfmult test floating point mult’);
writeln(’tshift test ROR/ROL/SHR/SHL’);
writeln(’tspec0 test pack exp & float ‘);
writeln(’tspecl test seed, unp_exp, unp_man, root_exp, & root_man’);
writeln(’tspec2 test round & trunc’);
writeln(’tspec3 : test sign manipulation’);
writeln{’tall test all of the above’);

writeln{’dsoe
writeln(’sce
writeln(’start

do not stop on error’);
stop on error’);
start testing’);

writeln(’stop stop testing’);
writeln(’sb select memory bank’);
writeln(’dw display memory word’);

writeln(’sw
writeln(’cont
writeln{’single

substitute memory word’);
set testing mode to continuous’);
set testing mode to single’);

9 %6 €0 49 ¢ 48 S5 6 NE SE N6 G Ge 40 S8 R U sa e¥ S 8 S0 a0

writeln(’debug toggle debug setting’);
writeln(’quit quit FPU Test Monitor’);

end

else

if command = ‘tmem’ then test_memory

else

if command = 'tlog’ then test_logical

else

if command = ’tiadd’ then test_iadd

else

if command = ’tfadd’ then test_fadd

else

if command = ‘timult’ then test_imult
else
if command = ‘tfmult’ then test_ fmult
else
if command = ’tshift’ then test_shift
else
if command = ‘tspec0O’ then test_speciall
else
if command = ’tspecl’ then test_speciall
else
if command = ‘tspec2’ then test_special2
else
if command = ’tspec3’ then test_special3
else
if command = ‘tall’ then test_all
else
if command = ‘dsce’ then stop_on_error := ‘n’
else
if command = ’sce’ then stop_on_error := 'y’
else
if command = ’start’ then start_processor
else
if command = ’stop’ then stop_processor
else
if command = ’sw’ then substitute_word
else
if command = ’dw’ then display_word
else
if command = ’sb’ then select_bank
else
if command = ‘t’ then t
else
if command = ‘debug’ then toggle_debug
else
if command = ’‘quit’ then exit
else
if command = ‘cont’ then
begin

continuous := ’'y’;

writeln(’Next test specified will be repeated indefinitely’);
end
else
if command = ‘single’ then
begin

continuous := ‘n’;

writeln(’Next test specified will not be repeated’);
end
else
if command = 'exit’ then exit

end;
end.

35

Appendix C : GAL Listing

Name
Partno
Date
Revision
Designer
Company
Assembly
Location
Device

rom _cotrl;

000;

03/8/91;

0.0;

Dr. Tan;

Cerl;

FPU test board;
Pals;

Gl6ve;

/* Inputs */

Pin 1
Pin 2 =
Pin 3 =

4

5

6

Pin
Pin
Pin

clk;
'reset;
read3l;
freeze;
guard;
clk_adv;

/* Output */

Pin 12 =
Pin 13 =
Pin 14 =
Pin 15 =
Pin 16 =
Pin 17 =
Pin 18 =

/* Logic

rom_a0.d

rom_al.d

rom_a2.d

dav3.d
rom_cs
clear
fpu_frz

rom_a0;
rom_al;
rom_a2;
!rom_cs;
dav3;
fpu_frz;
clear;

Equations */

= !rom_a0 ¢ davd & !freeze

& !guard & !reset

rom_a0 & (guard # freeze # !dav3) & !reset;
= ((rom_a0 & !rom_al # !rom a0 & rom_al)

freset)

freset)

& rom_al) & rom_a2)

(rom_a2 & (freeze # quard # !dav3d) & !reset);
read3 & !dav3 # davl & (freeze # guard) & read3;

& dav3 & !freeze & 'guard ¢

rom_al & (guard # freeze # !davd) & !reset;
= ((rom_a0 & rom_al & !rom_a2 # !(rom_al

& dav3 ¢ !freeze & fguard ¢

#

= read3l;

= reset;

= 'b’0;

57

NAMR inst_ctl;

Partno 000;

Date 02/20/91;

Revision 0.0;

Designer Dr. Wei Siong Tan;
Company Cerl, Georgia Tech;
Assembly GT-EP Evaluation Board;
Location GAL2;

Device Gl6vs;

/* Input */

Pin 2 = clk_adv;
Pin 3 = !inst_wr;
Pin 4 = !cs_pha;
Pin 5 = !cs_phb;
Pin 6 = inst_en;

/* Output */

Pin 12 = !cs_phbO;
Pin 13 = !cs_pha0;
Pin 14 = !cs_phal;
Pin 15 = !cs_pha2;
Pin 16 = !inst_oe0;
Pin 17 = !inst_ocel;
Pin 18 = !inst_we0;
Pin 19 = !inst_wel;

/* Logic Equations */

cs_phb0 = c¢s_pha;

cs_phald = cs_phb; /* iag instruction is actually accessed on phase B */
cs_phal = cs_phb; /* iag instruction is actually accessed on phase B */
cs_pha2 = cs_phb;

inst_oel = !iﬁst_en;

inst_cel = !inst_en;

inst_we0 = inst_wr & clk_adv;

inst_wel = inst_wr & clk_adv;

58

NAME dm otrl;

Partno 000;

Date 02/20/91;
Revision 0.0;

Designer Dr. Wei Siong Tan;
Company Cerl, Geoxgia Tech;
Assembly GT-RP Evaluation Board;
Location GAL2;

Device Gl6VS;

/* Input */

/* pin 1 = osc */

Pin 2 = write2;

Pin 3 = !writel;

Pin 4 = booting;

Pin S = read3;

Pin 6 = clk;

Pin 7 = ods_sel;

Pin 8 = ids_sel;

Pin 9 = write3;

/* Output */

Pin 12 = !dat_we0;

Pin 13 = !dat_wel;

Pin 14 = !dat_ce0;

Pin 15 = !rf_en;

Pin 16 = clk_adv;

Pin 17 = !fpu_oe;

Pin 18 = fpu_frz;

Pin 19 = rf_ off24;

Sdefine false {clk & !clk)

/* Logic Equations */

dat_we0
dat_wel
dat_oe0
rf_en
clk_adv.d
fpu_oe
fpu_frz
rf_off24.

= writel & clk_adv & !write2 & !write3;
= writel & clk_adv & !write2 & !write3;
= !clk_adv & !read3;
= ods_sel # read3;
= lclk;
= ods_sel & !readl;
= 'b’0;
oce = lclk;

59

NAME ap_otrll;

Partno 000;

Date 03/21/91;

Revision 0.0;

Designer Dr. Wei Siong Tan;
Company Cerl, Georgia Tech;
Assembly GT-EP Evaluation Board;
Location GAL3;

Device Gl6Vs;

/* Input */

/* Pin 1 = AP_clk; */
Pin 2 = !reset;

Pin 3 = write2;

Pin 4 = reid2;

Pin 5 = !cp_ack;
Pin 6 = !ntc_ack;
Pin 7 = !bus_error;
Pin 8 = l!ep mstr;
Pin 9 = a23;

Pin 19 = rf_adr24;
/* Output */

Pin 12 = tack;
Pin 13 = !EP_Brgq;
Pin 14 = AP _dir;
Pin 15 = rfi2;
Pin 16 = !wr;

Pin 17 = ap_cab;
Pin 18 = apstate;

/* Logic Equations */

$SDEFINE idle *b’11
$SDEFINE writing 'p’01
$DEFINE reading0 ’‘b’00
$SDEFINE readingl ’'b’10

SDEFINE idle_s (apstate & AP_dir)
$DEFINE writing_s (!apstate & AP dir)
SDEFINE reading0_s (!apstate & !AP_dir)
$DEFINE readingl_s (apstate & !AP_dir)

$DEFINE tiw (write2 & rf_adr24)

SDEFINE twi (ack & !(write2 & rf adr24) & !read2 # reset)
$DEFINE twr0 (ack & read2)

SDEFINE tir0 (read2)

$DEFINE trOrl (ack # reset)

$DEFINE trli (!read2 ¢ !(write2 & rf_adri4))

$DEFINE trlw (write2 & rf_adr24)

ack = ((ntc_ack & 'a23 # cp_ack & a23 # bus_error) & ep_mstr # reset);
rfi2.d = idle_s # writing_s & ack # readingl_s # rfi2 & write2 § rf_adr24;
wr.oe = ep_mstr;
wr.d = idle_s & write2 & rf_ adr24

writing_ s & (lack # write2 ¢ rf_adr24)

readingl_s & (write2 & rf_adr24);

ap_cab.d = idle_s & write? & rf_adr24
writing_s & ack & write2 & rf_adr24
readingl_s & write2 & rf_adr24;
EP_Brq.d = idle_s & (read2 # write2 & rf_adr24)
writing_s # reading0_s # readingl_s;

field state_machine = [apstate,AP_dir];

SEQUENCE state_machine {

PRESENT idle IF tiw NEXT writing;
IF tir0 NEXT reading0;
DEFAULT NEXT idle;
PRESENT writing IF twi NEXT idle;
IF twr0 NEXT reading0;
DEFAULT NEXT writing;
PRESENT reading0 IF trOrl NEXT readingl;
DEFAULT NEXT reading0;
PRESENT readingl IF trli NEXT idle;
IF trlw NEXT writing;
DEFAULT NEXT readingl;

61

NAME
Partno
Date
Revision

Des

igner

Company
Assenxbly
Location
Device

/*

Input

/* Pin 1

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin

ap_otrl2;

000;

03/21/91;

0.0;

Dr. Wel Siong Tan;
Cerl, Georgia Tech;
GT-EP Evaluation Board;
GAL3;

Gl6vVe;

*/

= AP_clk; */
treset;
write2;
read2;
tack;
'EP_Brq;
AP dir;
'ep_mstr;
adv_clk;
apstate;
rf_adr24;

/* Output */

Pin
Pin
Pin
Pin
Pin

/*

12 =
13 =
14 =
15 =
16 =

Logic

dav2;

'rd;
ap_adck;
ap_cba;
tap_dat_en;

Equations */

SDEFINE idle_s (apstate & AP_dir)
$DEFINE writing s (l!apstate & AP _dir),
$DEFINE readingQ_s (!apstate & !AP dir)
SDEFINE readingl_s (apstate & !AP_dir)

dav2.d = (ack & reading0_s) # dav2 & read2 & readingl_s;

rd.oe

= ep_mstr;

rd.d = idle_s & read?2 & reading0_s & !ack ¥ writing_s & read2 & ack;
ap_adck.d = idle_s & (read2 # write2 & rf_adr24)

writing_s & ack
readingl_s & write? & rf_adr24;

ap_cba.d = reading0_s & ack;
ap_dat_en = AP dir ¢ ep_mstr & (!AP dir & read2);

62

NANE ap_ctrld;
Partno 000;
Date 03/21/91;

Revision 0.0;

Designer Dr. Wei Siong Tan;
Company Cerl, Georgia Tech;
Asasembly GT-EP Evaluation Board;
Location GAL4;

Device Gl6vs;

/* Input */

/* Pin 1 = AP_clk; */
Pin 2 = rf_adr0;

Pin 3 = rf adrl;

Pin 4 = write3;

Pin 5 = kernel_mode;
Pin & = l!reset_out;
Pin 7 = lep _mstr;
Pin 8 = freeze;

Pin 9 = rf_adr24;

/* Output */

Pin 12 = !intrl;
Pin 13 = !'Bus_lock;
Pin 14 = !reset;
Pin 16 = !ledl;

Pin 15 = !led0;

Pin 17 = !block;
Pin 18 = fpu_clk;
Pin 19 = clk;

/* Logic Equations */

$define ep_led0 (!rf_adrl
S$define ep_ledl (!rf_adrl
Sdefine ep_intrl (rf_adrl
$define ep_block (rf_ adrl

& 'rf_adr0 & rf_adr24 ¢
& rf_adr0 & rf_adr24 &
&€ 'rf_adr0 ¢ rf_adr24 &
& rf_adr0 ¢ rf_adr24 ¢
led0.d = (ep_led0 & !led0 & !reset_out)

4 (lep_led) & led0 & !reset_out);

ledl.d = (ep_ledl & !ledl)
(tep_ledl & ledl & !reset out);
intrl.d = (ep_intrl & !intrl & !reset_out)

4 (lep_intrl & intrl & !reset_out};
Bus_lock.ce = ep_mstr;
Bus_lock = block;
block.d = {(ep_block & !block)
(!'ep_block & block & !reset);
reset .oe = 'b’0;
reset = reset_out;
clk.d = teclk;
fpu_clk.d = !clk & !freeze;

63

write3)

write3 & kernel_mode)
write3 & kernel_mode)
write3 & kernel_mode)

Appendix D : CUPL Listing

MR XBar;
Partno 000;
Date 9/11/90;

Revision 0.00;
Designer Drx. Tan;
Company Cerl;

Assembly Multlibus interface;
Location
Device

none;
Gl6vs;

/* Allowable Target Device Types: GAL16V8

/* Inputs */

Pin
Pin
Pin
Pin
Pin
Pin
Pin

~N s W N

ROT;

WIN;
!XB_FF;
!XB_EF;
DAV_IN;
DAV_RST_IN;
freset;

/* Outputs */

Pin
Pin
Pin
Pin
Pin
Pin
Pin

12
13
14
15
16
17
18

/* Logic

RFI

XB_WR
XB_RD
XB_DIR
XB_oe

DAV

DAV:;
RFI;
!XB_WR;
!XB_RD;
!XB_oe;
XB_DIR;
DAV_RST;

Equations */

!XB_FF;

WIN;

ROT & DAV_IN;
ROT;

(WIN # ROT);

ROT & 'reset & !XB_EF # !DAV_RST_IN;

DAV_RST = (!ROT # reset) § !DAV_IN;

*/

65

NAME decl;
Partno 000;

Date 5/7/91;
Revision 0.00;
Designer Dr. Tan:
Company Cerxl;
Assembly GT-DP/PFP;
Location none;
Device Gl6ve;

/* Allowable Target

/* Inputs */

Pin 1 = !BS;

Pin 2 = HADR_4;
Pin 3 = HADR_5;
Pin 4 = HADR_6;
Pin 5 = ODSSEL;
Pin 6 = IDSSEL;
Pin 7 = !APXB_EF;
PIN 8 = !APXB FF;
Pin 9 = !XACK;

/* Outputs */

Pin 12 = !CS_D;
Pin 13 = !CS_S;
Pin 14 = !CS_X;
Pin 15 = !APXB_RD;
PiN 16 = !APXB_WR;
Pin 17 = DATA_O;
Pin 18 = DATA_1;
Pin 19 = !DR;

/* Logic Equations

CS_S = BS & !'HADR_6
CS_D = BS & !'HADR_6
CS_X = BS & !'HADR 6
APXB_RD = !ODSSEL &
APXB_WR = ODSSEL &

DATA_1.0E = BS & !ODSSEL &

DATA_1 = APXB_EF;

DATA_0.0E = BS & !ODSSEL ¢

DATA_O = APXB_FF;
DR.OE = BS;

Device

*/

& !'HADR_ S5 & !HADR_4;
& !'HADR_S & HADR_4;
& HADR 5 & !HADR 4;
ID.SEL & BS & !HADR_6 &
!IDSSEL & BS & !HADR 6 &

IDSSEL &

IDSSEL &

Types: GAL16V8 */

HADR_S &
HADR_S &

HADR_4;
HADR_4;

HADR_6 & 'HADR_5 & !HADR 4;

HADR_6 & !'HADR_S & !HADR_4;

DR = BS & (!HADR_6 ¢ !'HADR_ 5 # !HADR_6 & HADR_S & !HADR_4) & XACK

BS & 'HADR_6 &
PS & HADR_6 &

HADR_S & HADR_4 #
'HADR_S & !'HADR_4;

RAME dec2;
Partno 000;
Date 5/1/91;

Revision 0.00;
Designer Dr. Tan;
Coapany Cerl;
Assembly GT-DP/PFP;
Location none;
Device Gleve;

/* Allowable Target Device Types: GAL1l6V8 */

/* Inputs */

ODSSEL;
IDSSEL;

/* Outputs */

Pin 12 = !IMWTC:
Pir 13 = !MRDC;
Pin 14 = !BS;

/* Logic Equations */

BS = (DS_3 & DS_2 & !DS_1 & !DS_0);
MWIC = ODSSEL & !IDSSEL;
MRDC = !ODSSEL & IDSSEL;

67

39

sonewdyIg paeog : f xipudddy

o | =] @ 1 o
I A EE
P I
§!¢_§
=§=¥]
) -
1§
flsls
i !

JILI LY

e
QA4
mi

AARARRRARARARARARR

.

fedeaty
UrisN 3
L

69

0L

1

:.al_ _ul.l

g

wieg Aoy v
prog 43-18

) \paveny Butuesujtug seyndeny

JHE:
ﬁs

t

J (JUUL!IUUUUU
B

Aoieape) 30 M) viaoeg L
andd 3
(7 Jaw
s N ._ D
TEBTWAD @

0 0
i

LIGER, N EEN

C 0 LA

=g

! .
0ol
111
LN
) -
13}
. AiiiNg
i
0
~
o d
Ed i

71

1 | _¢ | 3 1 12

..nol_ 1-\0.!'

l.._ _m

URIINg TINg NG

»h e A
7] pros &-18 vy EEE——
) \pavessy Sujasuiby myndeg | e IIIJ
Motoupe] j) MW viBuoey _
CJ s
g O wre
anl (g]

< Bl

R T

3R#2B82 8988 = ETTIT T TTTIEY T T LN TITIE R332 3985 =
; wwﬁ 9+39Su¥ 4 Wﬁ S+9Sd+ 2 wwﬁ S+9SUv 2 xwdwvwwmv\.

YRRIBR2 ¥en IRRIBR= €zn IRRTBER=2 een IWRTBR=2 n

i RNEEEEEE EEERRHEE 333311

<O 0"

o %)
3 =
sl o
3 4 ot =
zizg
ey M
Pil * Pl
[|
[|
8eik X
Q0000
o
TRLY Tn> 8§
43433314 b3i-d4 313 1

g Gk ot G G} oot St k. Snci

6 g i St 3 Pt St S

73

nTREBR FEFP. L

- b 2y XJ < ‘ - . bk b~ i & ol
3}3@@%33333 ’EE;ES!EEEES§E=§§EEEEE§E§§§§§E

lalalalalalalel
e P e s e b A o o
T bt b Gl Ak Gl fack Ad hnd S S B Tl S S W U ““UU el ot bad bud
cooa3399¢ooeoooooo=a 8aaa coonzz

Seargia Institute Of Techmology
- Conputer Enginesring Aesearch Lab

< JK0..0
[

ECCCERT EE E Q 0d 1t o o ol bt et i b b b ot &t
““‘ CECTTTECTE

74

EEE"EE%i !

)19 Lo 3008 - |

prog 3-19 —

o paessy Butaruibuy decy | e s
Moyoape) 10 MW V0w LI_

823833FAT sen SR YEN
HEBZILAD > HESZILAD -

oL .

b
I | 4 1 3 |
Mad l— — INON vem
i Ndd = _ [m y
H ooy 3-18 —d | ...4..... ~
@1 pavveny Bupanuibuy s ynden) - L
Aotoupey §) Sy viloe aeml BEWEEEEE M
mmmmmmmmu%mm 831
—TeE—w 1€8
624 5z
m WX~ td WMM ﬁ rgd.;
ﬁ %1 SZ5 |z
-y d H %
o] €2 o
zE W) 7 125 i
1T 124 2
i e Jel b
e b —
oTE T
EE 1d 4 i
£1d b8 ,
S i e
[
’ L ﬂm m o |
%] 484 s
=) 204 o]
2T ﬂu H B
£ 2 =
| ﬁﬁ =
| a
’ —CO KN
¥
1 | 4 | 3 |

s, s S

L

-4
e
=
&
&
g
gz
a2
N~ g
™M =
- =
2
g
g
£
=

1aQg

L T H R g

lE%lﬁii?EEEEEs

oT-EP Board
1A Section

Jum 9 10

77

I l b4 1 £ | ¥
[3 1 Il_ — ION pem N
8
L
ey Bud he-m-o1 i,
ooy o518 v e
) \aresny Sujasuibuy Syndes) - —
Aojoupe] j0 IMI] viBaoey _
12408 OO - 0L S

An=

o o e =

4||1A4

Jigds &:t___ E:_

mmmmmmmmm g
%m:
1>

mmmwmﬁmmwwmwawwmmmmm_ﬁw_wﬁzﬁa_rznazaaﬁ..xua_..z_____
sha by e

3 ekl R bisih
PR P T T
.“‘¢‘¢‘¢¢‘t¢“:‘¢¢¢¢“¢¢ ¢¢¢¢¢‘:tttt‘:t::tt::ttt::zzzcczczeggccec L1311 bbbt

-------------- DRER grrA N =

b I LEL I L

- A
- 0 s N

ou
ual
=
asi

[77 o Taw

G0

SONeWIIYOIS paeoq : g xipudddy

hor B 18511 @M i1

31007 WWINGD

- (Ui
-<J 2N

8 rrﬁwwwmw rrmMmmwmw vrzuwmmﬁ vvmnmmm%
" F B B 0 B g B F F
ﬂmﬁ e aMm Fhpkhp i F r

il
ggaq EA 81 i=2 w m

e -

18

1 | z 1 £ 2 1 5 i 9 1 3] 8
| | SO TR0 1% 0
. —
- o 1917 @3M 1N
L U Y
B)
8]
~ - R TR = " Q= —
A T r@rr@vrww S
3] _m i —m 3
S TEEFERF™
=
¢ a
| € |l + 1 g | 9 | 2 i 8

1 1 z 1 £ [] S | 9 1 P | 8
- — n_ [), .
- ol 1817 @9 AN
Y JUIL Y
|
—
8 n “ F“J“ JHF“ —1 m 11 !
:] [] [a 8
SRR2ER B UI& SRARTAB B ﬂl m SERTER & -l o TEARTER B -l m
qERTER B N SENTEAN B M SANSSN B ﬂ CERYER & B
-1 -
U IANY - L ’ 11l - il - 111 - J LI u U
a g- T - T - AR g= -
KBRTAR m L JARIRN - J JREIBX B ﬂ ﬂ L a8 2 - m JARTS - m JERTAS B - m
VERSBN B YENTEN ® YRRYEN = SENTEN B SERTER B SRRTAR &
— |
| @ I T - - T
| - 4 H 4 i ‘
| £ 1 v | 5 1 9]] | 8

o | = |

:

0

l
g

'

e

(d_%)—
(1d_e)r—
(d_a)—y
=T
RO
(1d_=)—

;

;

B (8'(E

;
i
|

58
1 1 z | £ 4 | S | 9 | ¢ 1 8
,In—li_ = SQnwe Ta08 i 00
ﬁl lL d — -
-] e~ 1817 Gon 100 :
Y yun JNAATAARE o asuanzanm o Y
= 91X¥Sda mgiil ext&ogif
N, -- - -- -+ -7~ A - - -
. !.”U : | nwnll
mum > : [
T -
ROGRRCATNARESESRRREEECRARRNSANNE He -
23 2 & & i
gas g g
L s 31
— m [O— wu“ % 1 1 .ﬁl _ MnUv""- T
2 s ~COm
m . .1.1.—“! m M A. .
1.1 m 1]
58 - ghE
3 £ = M H & 3
£2 = X8
2" RN m $RE
FRPBEEBRERLBREEERREPREDBRERRIER a
Ty Ll
— [snaa -
— > s
. T, —
2R .
[41131 Y - N
a : e = _m-_-m-ﬂwmﬂ_m <= g
Dm
3 Wﬂﬂ | € | ¥ l S | _ S]]] 8

£

sopewayds paeog d4d/dd—LD : 9 xipuaddy

——————————

"!!!!!i!!gii"ii“i

EEEESSLSEREREER

i:i:@:iﬁﬁiiﬁiﬁﬁiﬁiﬂiﬁi aaases asssesasasasassssezsesesi

HHMHMHMNWU&MHMUUUUWMUMHWH

Seorgis Institute OF Yechvology

- Coaputer Englnesring Aessirch Lab

lll

0 ot ot oy

e e . K.

ULIRLB s D s

III

A

i:3:3:33331Eiigiiiggggigiiazea3:3:3223§§E§§§§“§§§gégggﬁﬁﬁa@:@:@

-
i AN N R BN BN A R B BN AN B D AN B BE B e e

2PTWMAR) ETNNUY 23N
pvog dddvda-18

H

) \paeeny Bupseuity & yndur) - om—
Aoonpe) 0 SyMTIsu] w1000

03-dd
s =
NIU3S
nouis [
A0 *
1% A
xdm.% rﬂﬂm bl
.shﬂ g 3 B 3
O o
ol —r
L um
BUQd [FT VW<
Wy [T Twm | ——CI v
o [T TwR v
W20Hd [BZ T3 M
C I
1164 m
Zu16a
€yLua [T]
#o1ua
SH1ba
U164
28140
£ T m
) [T
#in
i | Al 1 []

5%

- u _ Z _ 3 I ¥
v e I_.— HON e
[[n
L)
TR Spoost wes
Y PIvOg dou ‘40 v ...wrl.l. Y
] Paeswy Supsesuibug mynder) - ~—
Moiorpe: 40 AN TIV] ¢10.00p R
BN31IW9
+{ TINI 6NI
e 3] Zio/1 L
anC A AR
< H ¥10 NI o 8
g L 1m~0\~ ® SNI S
H 91071 & NI qam [y
8101 NI T - 1'%
610/1 IN] | yami g]
— ! 4 -
8NIT W9
TINI 8 6NI ..o et]
[s <Lam, Tt H N~9\~@ BNI TR) AR
R CrH = FI0/1 @ SN |] |aesat 9
(g T L’] 21071 ENI HE—yomy pemlg’
[L w5 610/1 INI -
e pe
S0
q q
i | 4 1 3 ! 2

413

X
oDit..e
SE

Bekh S3503I8S Rk 33033480 g BREN RERIZEES g
g

=)
i BZSR183% BeiE RIBEIERR
re Cr

ERESE S3USIEEL
-

X

il
-

Ssorgta Institute OF Yechvelogy
Computer Englrearing Ressarch Lab
ST-OP/PFP Board
Crossbar FIFO Sactien
[— 1 o §

- |

[
=

i1
S
<O DS .0

FHTE
!!;:;llg %

I E Il ' “l“‘“'“!iiiii].

HOLIINNOD SNULULS BuBX LTI L e[S

Secrgla lnstituta Of Technology
v— - Conputer Engirearing Rasearch Lab

— NONE

